هيكل (1) - كيمياء 12متقدم الاتزان - امتحانات سابقة

1 - يُقال عن الاتزان أنه ديناميكي لأن:

ج - التفاعل الأمامي يصل للاكتمال

د - كلا التفاعل الأمامي والعكسي الاتزان يستمران

أ – كلا التفاعل الأمامي والعكسي الاتزان يتوقف
 ب – التفاعل العكسي يصل للاكتمال

2 - يقال عن النظام المتزن أنه ديناميكي لأن:

ج - التفاعل الأمامي والعكسي يستمران في الحدوث

د - تراكيز المتفاعلات والنواتج ثابتة

أ – درجة الحرارة لا تتغير

ب - الخواص النظورة والملموسة ثابتة

$2H_{\mathrm{g(l)}}+\mathrm{O}_{\mathrm{2(g)}}\ ightleftharpoons 2Hg\mathrm{O}_{\mathrm{(s)}}$: هو التالي هو 3

$$Keq = \frac{[\text{HgO}]^2}{[\text{Hg}]^2[\text{O}_2]} - 2 \qquad \qquad Keq = \frac{[\text{2HgO}]}{[\text{O}_2][\text{2Hg}]} - \varepsilon \qquad Keq = [\text{O}_2] - \varphi \quad Keq = \frac{1}{[\text{O}_2]} - \frac{1}{2} = \frac{1}{2} =$$

؛ في تعبير ثابت الاتزان التالي : $K_{eq} = [CO_2]$ ، أي من الأنظمة المتزنة التالية يحقق تعبير ثابت الاتزان السابق

$$CO_{2(g)} \rightleftharpoons CO_{2(s)}$$
 - \int

$$H_2CO_{3(aq)} \rightleftharpoons H_2O_{(l)} + CO_{2(g)}$$
 - \searrow

$$PbO_{(s)} + CO_{2(g)} \rightleftharpoons PbCO_{3(s)}$$
 - \hookrightarrow

 $3O_{2(g)} \rightleftharpoons 2O_{3(g)}$, Keq = 1 : في الاتزان التالي - 5

أي المعادلات التالية يقارن تركيز الأكسجين بتركيز الأوزون ؟

$$[O_2]^{\frac{2}{3}} = [O_3] - 2 \qquad [O_2] = [O_3]^{\frac{3}{2}} - 2 \qquad [O_2] = [O_3] - 2 \qquad [O_2] = [O_3]^{\frac{2}{3}} - 1$$

7 - تتغير قيمة ثابت الاتزان عند:

8 - أي مما يلي يوصلنا إلى حالة الاتزان بسرعة ، لكن لا يؤثر على موضع الاتزان

أ ـ التركيز ب ـ الضغط ج ـ درجة الحرارة د ـ الحفاز

9 - النواتج تكون مفضلة في تفاعل متزن عندما يكون:

أ - التفاعل ماص للحرارة ب - ثابت الاتزان له قيمة كبيرة ج - الخواص المنظورة ثابتة د - طاقة تنشيط التفاعل الأمامي مرتفعة

10 - أي من العبارات التالية صحيحاً:

ج - قيمة Keg الصغيرة تعنى أن سرعة التفاعل منخفضة

أ – قيمة K_{eq} الكبيرة تعنى أن النواتج هي المفضلة

 K_{eq} الصغيرة تعنى أن سرعة التفاعل مرتفعة K_{eq}

ب - قيمة K_{ea} الكبيرة تعنى أن المتفاعلات هي المفضلة

$H_{2(g)} \rightleftharpoons 2H_{(g)}$, Keq = 1.2×10^{-71} : يتفكك غاز الهيدروجين إلى هيدروجين ذري كما يلى

يشير ثابت الاتزان السابق إلى:

ج – المتفاعلات هي المفضلة

أ ــ معدل التفاعل بطئ جدا

د - الحفاز ضروري لتحقيق الاتزان

ب – الاتزان طارد للحرارة

12 - حدد النظام المتزن الذي يرجح النواتج بأدنى تقدير .

A. $2 \text{HgO}_{(s)} \rightleftarrows 2 \text{Hg}_{(l)} + O_{2(g)}$

 $K_{eq} = 1.2 \times 10^{-22}$

B. $CH_3COOH_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + CH_3COO_{(aq)}^-$

 $K_{eq} = 1.8 \times 10^{-5}$

C. $2NO_{(g)} + O_{2(g)} \rightleftarrows 2NO_{2(g)}$

 $K_{eq} = 6.5 \times 10^5$

D. $H_{2(g)} + Cl_{2(g)} \rightleftarrows 2HCl_{(g)}$

$K_{eq} = 1.8 \times 10^{33}$

$m Er_{2(g)}$ في وعاء ، وتفاعلا ليحققا الاتزان التالي: $m I_{2(g)}$ و $m Br_{2(g)}$ في وعاء ، وتفاعلا ليحققا الاتزان التالي:

$$I_{2(g)} + Br_{2(g)} \rightleftharpoons 2IBr_{(g)}$$
, Keq = 280

أى مما يلى يصف العلاقة بين [IBr] و $[I_2]$ عند الاتزان ؟

 $[I_2]=280[IBr]$ - $[I_2]=2[IBr]$ - $[I_2]=[IBr]$ - $[I_2]=[IBr]$

14 - ينص مبدأ هنري لويس لوشاتيليه على أن:

أ - سرعتى التفاعل الأمامي والعكسي متساويتان عند الاتزان

ب - الجهد ينشأ عن تغيرات في التركيز أو في الضغط أو في درجة الحرارة

ج – كلا من المواد الصلبة والمذابات تحذف من تعبير ثابت الاتزان بهدف ازالة الجهد

د - الاتزان الكيميائي يستجيب لتقليل الجهد المطبق على النظام

$N_{2(g)}+3Cl_{2(g)}$ $\rightleftharpoons~2NCl_{3(g)}$, $\Delta~H=+460~KJ~$: في النظام المتزن التالي : 15

أي مما يلي يصف ما يحدث عند إضافة NCl₃

	$ m K_{eq}$ قيمة	انزياح الاتزان
١	يبقى ثابتا	يمين
ب	يزداد	يمين
ج	يبقى ثابتا	يسار
7	يقل	يسار

 $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$: في الأتزان التالي -16

أي مما يلي يؤدي إلى انزياح الاتزان يساراً؟

أ – إضافة المزيد من CaO ج – إنقاص الحجم

د - زیادة مساحة سطح CaO

ب - إزالة CaCO₃

```
CO_{2(g)} + H_{2(g)} \rightleftharpoons CO_{(g)} + H_2O_{(g)}: في الاتزان التالي = -17
                             [H_2O] أي مما يلى تتسبب إضافته للنظام السابق يؤدي لنقصان التركيز النهائى لـ
                                                                           H_2 - \psi CO_2 - \int
                                                     co - ح
                               H<sub>2</sub>O - 2
                                     2SO_{2(g)} + O_{2(g)} \rightleftharpoons \ 2SO_{3(g)} , \Delta H = -197KJ : في النظام المتزن التالي – 18
                                                                           أي مما يلي لن يزيح الاتزان جهة اليمين ؟
                                     ج _ زيادة الضغط
                                                                    \mathbf{O}_2 أ - إضافة المزيد من
                               د - خفض درجة الحرارة
                                                                            ب – إضافة حفاز
                                       NH_{3(g)} + H_2O_{(l)} \rightleftharpoons NH_4^+_{(aq)} + OH_{(aq)}^- : في النظام المتزن التالي
                                                            أي مما يلي سيزيد من تركيز OH عند إضافته ؟
                                                            NH_4^+ - \tau H_2O - \psi NH_3 - \uparrow
                                        4 - HCl
                                        [NH<sub>3</sub>]
        [H<sub>2</sub>]
                                                        أي من العوامل التالية سوف يغير التراكيز عند الزمن t?
 []
                                                                                          أ _ إضافة N<sub>2</sub>
                                                        ج - خفض درجة الحرارة
                                                         د – خفض حجم التفاعل
                                                                                          H_2 ب- إزالة
        [N_2]
                     Time
                                                   N_{2(g)}+3H_{2(g)}\ \rightleftarrows\ 2NH_{3(g)}+92kj : في النظام المتزن التالي = 21
                                                            أي من العوامل التالية يفضل انتاج المزيد من النواتج؟
                            أ - ضغط منخفض ودرجة حرارة منخفضة ج - ضغط مرتفع ودرجة حرارة منخفضة
                              ب - ضغط منخفض و در جة حر ارة مرتفعة د - ضغط مرتفع و در جة حر ارة مرتفعة
              22 - في نظام طارد للحرارة في حالة اتزان ، فإن زيادة درجة الحرارة سوف يؤدي في انزياح الاتزان لـ :
                                      أ – اليسار ، وقيمة K_{eq} تزداد \gamma تزداد اليمين ، وقيمة وقيمة أ
                                       د - اليمين ، وقيمة K_{eq} تقل
                                                                          \mathbf{K}_{\mathrm{eq}} ب - اليسار ، وقيمة
                                             23 – أي من التفاعلات التالية ينزاح فيها الاتزان عند بذل جهد بـ "الضغط"
                                                                               CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)} -
                           H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} - \rightleftharpoons
                                       د - (أ، ج) معاً
                                                                NH_4Cl_{(s)} + energy \rightleftharpoons NH_4^+_{(aq)} + Cl_{(aq)}^- - \hookrightarrow
                                                      PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}: في النظام المتزن التالي = 24
 و عند الاتزان كانت : PCl_5 = [PCl_5] و PCl_5 = [PCl_5] ، فإن قيمة ثابت الاتزان:
                  د – 2.25
                                        ج - 0.900
                                                                  ب - 0.444
                                                                                              0.360 - 1
إعداد أ/إبراهيم النجار
                                                                                                            مراجعة الاتزان
```

$2NO_{(g)}+Br_{2(g)}\thickapprox 2NOBr_{(g)}$: في النظام المتزن التالي وبمعلومية التراكيز عند الاتزان عند المتزن التالي وبمعلومية التراكيز

ما قيمة Keq بمعلومية الجدول التالي

المادة	تركيز الاتزان
NO	$1.2\!\times\!10^{-2}\ mol/L$
Br ₂	$3.4\!\times\!10^{-2}\ mol/L$
NOBr	$5.8\!\times\!10^{-1}~mol/L$

$$1.4 \times 10^3$$
 - 2

$$6.9 \times 10^4$$
 - - 1.4×10^3 - - 8.2×10^2 - ب 1.5×10^{-5} - أ

$$1.5 \times 10^{-5}$$
 - 1

$$2NO_{(g)}+Cl_{2(g)}$$
 $\rightleftharpoons 2NOCl_{(g)}$, $Keq=12$: في الاتزان التالي - 26

: [Cl
$$_2$$
] فيكون [NOCl]=1.6 mol \setminus L , [NO]=0.8 mol \setminus L فيكون

$$3.0 \text{ mol}\L$$
 - 2 $0.33 \text{ mol}\L$ - $3.0 \text{ mol}\L$ - 2 $0.17 \text{ mol}\L$ - $3.0 \text{ mol}\L$ -

27 ـ في النظام المتزن التالي :
$$CO_{(g)} + Cl_{2(g)} \rightleftharpoons COCl_{2(g)}$$
 عند الاتزان في وعاء التفاعل الذي حجمه $CO_{(g)} + Cl_{2(g)} \rightleftharpoons COCl_{2(g)}$ على 1.00 mol $CO_{(g)}$ و 0.500 mol $CO_{(g)}$ نساوي :

، 298K ومحلول 0.0064M NaF عند خلط كميات متساوية من محلول محلول 0.020M Ca $(NO_3)_2$ عند درجة حرارة : فإنه ، $Ksp(CaF_2) = 3.5 \times 10^{-11}$ فإنه الإدا علمت أن

- والمحلول غير مشبع ولا يتكون راسب Qsp = 3.5×10^{-11} أ - $Qsp = 1.0 \times 10^{-7}$ والمحلول مشبع ويتكون راسب ج -
 - ب $Qsp = 1.0 \times 10^{-14}$ و المحلول مشبع و $Qsp = 1.0 \times 10^{-14}$ والمحلول غير مشبع ويتكون راسب Osp = 1.0×10^{-7}

3 - عند خلط CaCl من CaCl₂ الذي تركيزه 0.0322M مع 31.3 mL من NaOH الذي تركيزه 2.00145M $^{-3}$ علما بأن $^{-6}$ للراسب يساوي $^{-6}$ فإن نا

- أ $^{-7}$ Qsp =5.02× 10 والمحلول مشبع و لايتكون راسب ج - $^{-7}$ Qsp =5.02× 10 والمحلول مشبع ويتكون راسب
- ب $^{-14}$ والمحلول مشبع و لا يتكون راسب Qsp =1.0× 10 د- $Osp = 1.0 \times 10^{-7}$ والمحلول غير مشبع ويتكون راسب

ك - أي مما يلي يستخدم عند عمل الأشعة السينية للحصول على نتايج أفضل

Ba(ClO₄)₂ - \Rightarrow Ba(NO₃)₂ - \Rightarrow BaCl₂ - \Rightarrow $BaSO_4 - 1$

المنافضة الماريوم عن كلوريد الباريوم عند عمل الأشعة السينية للحصول على نتائج أفضل الأن : المنافع المنافع الله المنافع المنافع

أ ــ كلوريد الباريوم له ذائبية عالية فتوفر أيون الباريوم بوفرة ، فيكون غاية في الخطورة ج _ (أ ، ب) معاً

ب - كبريتات الباريوم لها ذائبية منخفضة ، فيسهل التخلص من أيون الباريوم بعد عمل الأشعة د - لا توجد إجابة مناسبة

حتم إضافة محلول يوديد الصوديومNaI إلى محلول مشبع من يوديد الرصاص (II) PbI2 (II) ،فإن التغير النهائي يكون :

	[I ⁻]	$[Pb^{2+}]$
Í	يزداد	يزداد
ب	يقل	يقل
ح	يزداد	يقل
7	يقل	يزداد

 $K_2CrO_{4(s)} + energy \Rightarrow 2K^+_{(aq)} + CrO_4^{2-}_{(aq)} : K_2CrO_4$ في معادلة محلول مشبع من كرومات البوتاسيوم

في مخطط الزمن مقابل التركيز بالمولارية التالي لمحلول مشبع من

 K_2CrO_4 ماذا يحدث عند الزمن K_2CrO_4

ج – تم رفع درجة حرارة النظام أ – تم إضافة KNO₃ إلى النظام ب - تم إزالة K2CrO4 من النظام د - تم خفض درجة حرارة النظام

K+ Concentration (M) CrO₄2-

Time

إعداد أ/إبراهيم النجار مراجعة الاتزان