هيكل وحدة سرعة التفاعلات الكيميائية

يحسب متوسّط سرعة التفاعل باستخدام معدل استهلاك المواد المتفاعلة أو معدّل تشكّل النواتج

1 - أي من الوحدات التالية يعبر عن متوسط سرعة التفاعل ؟

$$mol / min - 2$$
 $g / mol - 5$ $mol / L - 4$ $mL/g - 1$

2.50g من درجة حرارة معينة ، تفاعل $Ca_{(s)} + 2H_2O_{(l)} \rightarrow Ca(OH)_2 + H_{2(g)}$ وعند درجة حرارة معينة ، تفاعل 2.50g من الكالسيوم تماما في 30 ثانية ، فيكون معدل استهلاك الكالسيوم هو :

3 - أي مما يلي يمكن أن يستخدم كوحدات قياس سرعة التفاعل ؟

I	mL/s
II	g/min
III	M/min

د ـ لون المحلول

فقط	د - I و II و III	ج - I و III فقط	ب - [و [[فقط	أ - I فقط
-----	------------------	-----------------	----------------	-----------

4 - أي من التالي يمكن أن يستخدم كمقياس لسرعة التفاعل والذي يحدث في إناء مفتوح؟

$$Zn_{(s)} + 2HCl_{(aq)}
ightarrow ZnCl_{2(aq)} + H_{2(g)}$$
 Cl^- ج – ترکیز $-$ HCl ج – ترکیز

 $m I_2 + Cl_2
ightarrow 2ICl$: المخارية $m I_2 + Cl_2
ightarrow 2ICl$

فإذا كان $[I_2] = 0.400$ عند بداية التفاعل ، وأصبح $0.300~{
m M}$ بعد مضي $0.400{
m M} = [I_2]$ فأحسب متوسط سرعة $0.0250~{
m mol}$ التفاعل بوحدة $0.0250~{
m mol}$

6 - استعمل البيانات الموجودة في الجدول أدناه لحساب متوسط سرعة التفاعل:

	$ m H_2 + Cl_2 ightarrow 2HCl : $ بيانات التجربة للتفاعل							
[HC1]	$[Cl_2]$	$[H_2]$	الزمن s					
0.000	0.050	0.030	0.00					
	0.040	0.020	4.00					

أ – احسب متوسط سرعة التفاعل معبراً عنه بعدد مولات H_2 المستهلكة لكل لتر في كل ثانية .

ب - احسب متوسط سرعة التفاعل معبراً عنه بعدد مولات Cl_2 المستهلكة لكل لتر في كل ثانية .

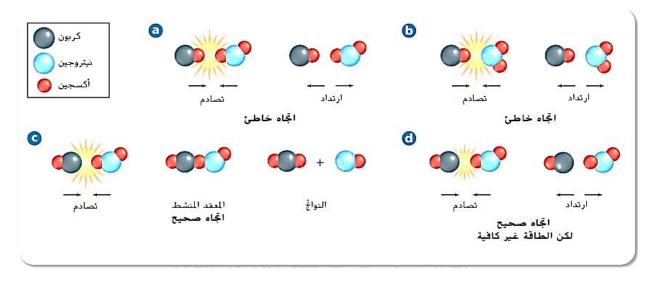
ج - إذا علمت أن متوسط سرعة التفاعل لحمض الهيدروكلوريك HCl الناتج هو $0.050 \, mol / L.s$ ، فما تركيز HCl الى يتكون بعد مرور $4.00 \, s$?

 $(0.02 \text{ mol}/\text{L.s} - 3 \quad 0.0025 \text{ mol}/\text{L.s} - 2 \quad 0.0025 \text{ mol}/\text{L.s} - 1)$

7 - يُستعمل الكاشف الكيميائي (الفينولفثالين)للكشف عن القواعد . تبين بيانات الجدول 5-3 انخفاض تركيز الفينولفثالين مع مرور الزمن عند إضافة محلول الفينولفثالين ذي التركيز 0.0050M إلى محلول مركز من مادة قاعدية تركيزها 0.6M

الجدول 5-3 التفاعل بين الفينولفثالين وكمية فائضة من مادة قاعدية							
الزمن (s)	قاعدية تركيز الفينولفثالين (M)						
0.0	0.0050						
22.3	0.0040						
91.6	0.0020						
160.9	0.0010						
230.3	0.00050						
350.7	0.00015						

(4.5 ×10⁻⁵ mol / (L.s))


أ - ما متوسط سرعة التفاعل في أول $22.3~{
m s}$ معبراً عنه بوحدة (L.s) ?

ب - ما متوسط سرعة تفاعل الفينولفثالين عندما ينخفض تركيزه من 0.00050M إلى 0.00015M

 $(2.9 \times 10^{-6} \text{ mol} / (\text{L.s}) : \pm)$

يفسر التفاعلات التفاعلات الطاردة للحرارة والتفاعلات الماصة للحرارة موظفًا نظرية التصادم

NO_2 و CO_2 و NO_2 و

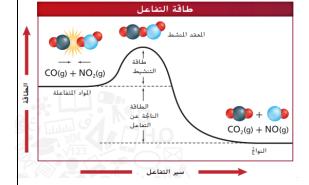
أي الأشكال يوضح أن الاتجاه صحيح لكن الطاقة غير كافية ؟

d - ك

c - ج

<u>ب</u> – ط

a - 1

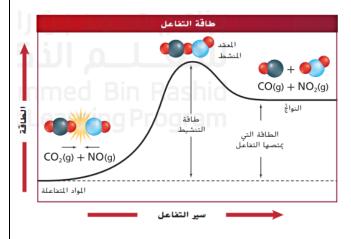

2 - في مخطط الطاقة التالي أي مما يلي غير صحيح؟

أ = المعقد المنشط تحول إلى نواتج

ب - التفاعل طارد للحرارة

ج – طافة التنشيط كافية لإحداث تصادم فعّال

د - لم يتم التغلب على حاجز التنشيط


3 - في مخطط الطاقة التالي أي مما يلي غير صحيح؟

أ = المعقد المنشط تحول إلى نواتج

ب - التفاعل ماص للحرارة

ج - طافة التنشيط كافية لإحداث تصادم فعّال

د - ارتدت الجزيئات المتفاعلة دون تصادم

إعداد أ/ إبراهيم النجار

هيكل سرعة التفاعلات الكيميائية - 12 متقدم - 2024

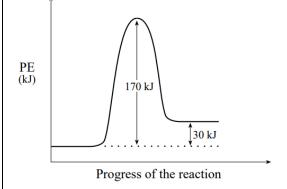
4 - لكي تكون التصادمات فعالة ، فلابد للمتفاعلات أن تحقق :

$$H_{2(g)}+I_{2(g)}\
ightleftharpoons \ HI_{(g)}$$
 , $\Delta H=\ +28\ kj:$ 4. -5

طاقة التنشيط اللازمة لتكوين HI هي 167KJ ، فإن طاقة التنشيط لتفكيك HI هي:

6 - يكون للمعقد المنشط:

28 KJ - ¹


$H_{2(g)}+I_{2(g)}\ ightleftarrow \ HI_{(g)}:$ 4 - في التفاعل التالي $^{-7}$

طاقة تنشيط تكوين HI تساوى HI ، وطاقة تنشيط لتفكك HI تساوى 139 KJ ، فتكون حرارة تكوين HI:

$$\Delta H = +28 \text{ KJ}$$
، المرارة ، $\Delta H = -28 \text{ KJ}$ في المرارة ، $\Delta H = -28 \text{ KJ}$ أ المرارة ، $\Delta H = -28 \text{ KJ}$

$$P = \Delta R = -28 R = -2$$

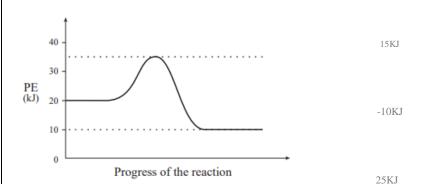
$$\Delta H = +28 \text{ KJ}$$
 ، ماص للحرارة ، $\Delta H = -28 \text{ KJ}$ ، ماص للحرارة ، $\Delta H = -28 \text{ KJ}$

8 - في مخطط طاقة الوضع التالى:

تكون طاقة التنشيط للتفاعل العكسى تساوى

9 - في مخطط طاقة الوضع التالي ، يكون التفاعل الأمامي:

$$\Delta H = -50 \text{ KJ}$$
 ، أ $-$ طارد للحرارة


$$\Delta H = +50 \text{ KJ}$$
 ، ب ماص للحرارة

$$\Delta H = -225 \text{ KJ}$$
 ، ج $-$ طارد للحرارة

$$\Delta H = +225 \text{ KJ}$$
، د – ماص للحرارة

https://ibrahimelnaggar-chemistry.com

10 - في مخطط الطاقة للتفاعل الإنعكاسي التالي:

أ - احسب طاقة التنشيط للتفاعل الأمامي

ب - احسب H∆ للتفاعل الأمامي

ج _ احسب طاقة التنشيط للتفاعل العكسي

11 - يحدث تصادم بين جزيئين متفاعلين والذي يتحقق بينهما أقل قدر من الطاقة اللازمة للتصادم والمسمى بطاقة التنشيط، وعلى الرغم من ذلك فإن الناتج لا يتكون عادة ، فيعود السبب ل:

د - الزوايا والمسافات اللازمة للتصادم غير مناسبة

ج ـ التراكيز قليلة

12 - ارسم مخطط الطاقة لتفاعل ماص للحرارة ، موضحاً عليه

أ _ طاقة المعقد المنشط

ب _ طاقة التنشيط

∆H - ₹

13 - الحد الأدنى من الطاقة اللازم للتغلب على حاجز الطاقة وتكوين المعقد المنشط هو:

أ _ حر ارة التفاعل

ج – طاقة وضع المتفاعلات د – التغير في المحتوى الحراري للنواتج

14 - المعقد المنشط هو مكون كيميائي:

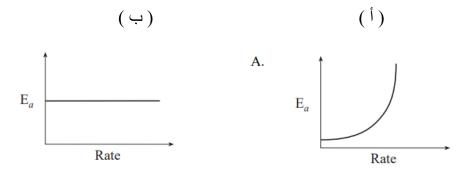
ب - مستقر وله طاقة وضع أعلى

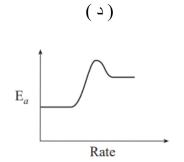
أ ــ مستقر وله طاقة وضع أقل

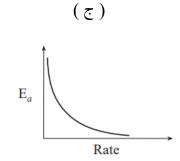
د - غير مستقر وله طاقة وضع أعلى

ج _ غير مستقر وله طاقة وضع أقل

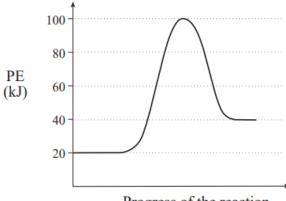
15 ـ تعرف طاقة التنشيط بأنها:


ج - فرق الطاقة بين المتفاعلات والنواتج

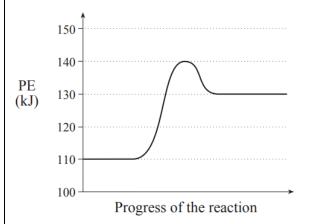

أ – طاقة حركة


د – فرق الطاقة بين المتفاعلات والمعقد المنشط

ب ـ طاقة المعقد المنشط


16 ـ لتفاعل معين والذي له آليات حدوث مختلفة ، وكل آلية لها E_a مختلفة وبالتالي سرعة تفاعل مختلفة ، أي من المخططات التالية يصف العلاقة بين قيم E_a والسرعات ؟

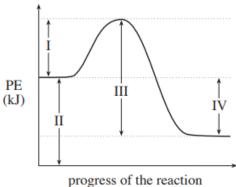
17 - في مخطط طاقة الوضع التالي:



Progress of the reaction

يمكن وصف التفاعل الأمامي

نوع التفاعل	طاقة التنشيط (KJ)	ΔΗ	
ماص للحرارة	80	+20	"
طارد للحرارة	60	+20	Ļ
طارد للحرارة	80	-20	ج
ماص للحرارة	100	-20	7


18 ـ في مخطط الطاقة التالى لتفاعل انعكاسي:

مما يلي يصف النظام ذو المخطط السابق؟

ΔH (KJ)	طاقة التنشيط (KJ)	التفاعل	
-20	10	عكسي	Í
-30	10	عكسي	ب
+10	30	أمامي	ج
+30	20	أمامي	7

19 - تخير ما يناسب مخطط الطاقة التالى:

IV	III	II	I	
طاقة التنشيط للتفاعل الأمامي	دلالة غير مناسبة	حرارة التفاعل	طاقة التنشيط للتفاعل العكسي	1
حرارة التفاعل	طاقة التنشيط للتفاعل العكسي	دلالة غير مناسبة	طاقة التنشيط التفاعل الأمامي	Ļ
طاقة التنشيط للتفاعل الأمامي	حرارة التفاعل	طاقة التنشيط للتفاعل العكسي	دلالة غير مناسبة	5
طاقة التنشيط للتفاعل العكسي	طاقة التنشيط للتفاعل الأمامي	دلالة غير مناسبة	حرارة التفاعل	7

20 - تأمل المعطيات التالية لتفاعل انعكاسى:

					20 kj								1
					30 kj	ي =	، العكسر	فاعل	بط للت	لتنشب	طاقة ا		2
1 \$71 1 1 1 1 1 1	1 11	**	tı	•	11	**	1 1 11	_	, ,			† 1	

أي مما يلي يمكن أن يصف نوع التفاعل وقيمة التغير في المحتوى الحراري للتفاعل الأمامي ؟

قيمة H∆	نوع التفاعل	
- 10 KJ	طارد للحرارة	Í
+ 10 KJ	طارد للحرارة	ب
- 10 KJ	ماص للحرارة	ج
+ 10 KJ	ماص للحرارة	٦

ا العكسى؛ $Ea = 96 \mathrm{KJ}$ ، $\Delta H = -136 \mathrm{KJ}$ ، أي مما يلي يعد صحيحا بالنسبة للتفاعل العكسى؛

Ea = -40 KJ ، أ – التفاعل العكسي طارد للحرارة

ب - التفاعل العكسي طارد للحرارة ، Ea = 40 KJ

Ea = 96 KJ ، التفاعل العكسى ماص للحرارة

Ea = 232 KJ ، التفاعل العكسي ماص للحرارة

22 - أي مما يلي يصف طاقة التنشيط؟

أ _ هي طاقة وضع المعقد المنشط

ب - تساوي (طاقة وضع النواتج - طاقة وضع المتفاعلات)

ج - تساوي (طاقة وضع المتفاعلات - طاقة المعقد المنشط)

د - تساوى (طاقة وضع المعقد المنشط - طاقة وضع المتفاعلات)

يصف العلاقة بين تراكيز المتفاعلات ومعدل سرعة التفاعل

يوظف طريقة السرعات الإبتدائية لتحديد رتبة التفاعل فيما يتعلق بكل متفاعل

سرعة التفاعل الابتدائية مقابل [CH₂O₂] سرعة التفاعل × (mol/L•s) 0,600 0.400 0.200 2.00 1.00 3.00 [H₂O₂] (mol/L)

1 - بالاستعانة بالمخطط التالي ، يكون قانون سرعة التفاعل لتفكك فوق أكسيد الهيدروجين 400 لانتاج الماء والأكسجين:

$$R = k [O_2]^2 - \tau$$
 $R = k [H_2O_2]^2 - 1$

$$R = k \left[H_2 O_2 \right]^2 - \int$$

$$R = k [H2O] - 2$$

$$R = k [H_2O]$$
 - \Rightarrow $R = k [H_2O_2]$ - \Rightarrow

2 - أي مما يلى رتبته الكلية لا تتفق مع الآخرين ؟

$$R = K[A][Z]$$
 -2 $R = K[C]^3$ -5 $R = K[A]^2[B]$ -9 $R = K[A][B]^2$ -1

x = 1 المتفاعل x = 1 .

$$R = K[A][Z]$$
 -2 $R = K[C]^3$ -7 $R = K[A]^2[B]$ -9 $R = K[A][B]^2$ -1

aA
ightarrow bB إذا كان تفاعل المادة A من الرتبة الثالثة هي aA
ightarrow bB إذا كان تفاعل المادة A

5 - إذا علمت أن التفاعل $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ من الرتبة الأولى للأكسجين ، والرتبة الكلية للتفاعل هي الرتبة الثالثة ، فإن القانون العام لسرعة التفاعل هو :

aA+bB
ightarrowنواتج خدد قانون سرعة التفاعل :نواتج حدد -6

بيانات تجريبية								
السرعة الابتدائية mol/(l·s)	التركيز الابتدائي [B](M)	التركيز الابتدائي [A](M)	قم المحاولة					
2.00×10^{-3}	0.100	0.100	1					
2.00×10^{-3}	0.100	0.200	2					
4.00×10^{-3}	0.200	0.200	3					

7 - غاز NO واحد من مكونات الضباب الدخاني(الضبخان)و أحد التفاعلات التي تضبط تركيز NO هو: $H_2O_{(g)} + N_2O_{(g)} + N_2O_{(g)}$ عند درجات حرارة مرتفعة ، مضاعفة تركيز $H_2O_{(g)} + H_2O_{(g)} + N_2O_{(g)}$ بينما تزيد مضاعفة تركيز NO من سرعة هذا التفاعل أربع مرات . اكتب قانون (معادلة) سرعة التفاعل مستخدما هذه المعطيات .

 $1.0 \times 10^{-5} \text{ mol/(L.s)} \quad 2.1 \times 10^{-4} \text{ s}^{-1}$

43.2×10⁻¹¹ mol/(L.s)

المعادلة حرارة محددة كما بالمعادلة $CH_3N_2CH_3$ عند درجة حرارة محددة كما بالمعادلة 8

 $CH_3N_2CH_3 \rightarrow C_2H_{6(g)} + N_{2(g)}$:

0.024 M

2

 $5.0 \times 10^{-6} \, mol/L \cdot s$

جدول 3-1 تحلل مادة الأيزوميثان

أ - احسب قيمة ثابت السرعة النوعية ووحدته

J

ب – ما قيمة سرعة التفاعل إذا كان التركيز الإبتدائي لـ هو 0.048M عند درجة حرارة ثابتة

وا بابيان ، $R = k[CH_3CHO]^2$ هو $CH_3CHO_{(g)} \to CH_{4(g)} + CO_{(g)}$ ، فإن البيان ، $R = k[CH_3CHO]^2$ هو

بيانات تجريبية السرعة الابتدائية السرعة الابتدائية (mol/(l·s)) [A](M) [A](M) 2.70 × 10⁻¹¹ 2.00 × 10⁻³ 1 10.8 × 10⁻¹¹ 4.00 × 10⁻³ 2 8.00 × 10⁻³ 3

10 - حسب التفاعل التالي: A → B ، احسب وحدة ثابت سرعة التفاعل عندما يكون التفاعل:

ب - من الرتبة الأولى

أ ـ من الرتبة صفر

د ـ من الرتبة الثالثة

ج – من الرتبة الثانية

يحسب السرعة اللحظية لتفاعل ما من خلال البيانات التجريبية

1 - أي مما يلي ليس ضرورياً لحساب السرعة اللحظية للتفاعل:

أ — ثابت السرعة النوعية عند درجة حرارة معينة
$$-$$
 ب — قانون السرعة المحددة تجريبيا $-$ تر اكبز المتفاعلات عن نفس درجة الحرارة $-$ د — المعادلة الكيميائية موزونة

يُمثّل بالتفاعل (${ m N}_2{ m O}_5$) والأكسجين (${ m N}_2{ m O}_5$) إلى غاز ثاني أكسيد النيتروجين (${ m N}_2{ m O}_5$) والأكسجين (${ m N}_2{ m O}_5$) عند تحلل خامس أكسيد النيتروجين (${ m N}_2{ m O}_5$) إلى غاز ثاني أكسيد النيتروجين (${ m N}_2{ m O}_5$) إلى غاز ثاني أكسيد النيتروجين (${ m N}_2{ m O}_5$) إلى غاز ثاني أكسيد النيتروجين (${ m N}_2{ m O}_5$) والأكسجين (${ m N}_2{ m O}_5$) يُمثّل بالتفاعل النيتروجين (${ m N}_2{ m O}_5$) أيمثل بالتفاعل علماً بأن :

$$K=1.0\times 10^{-5}~S^{-1}$$
 ، $[N_2O_5]=0.350~M$ ، $R=k[N_2O_5]$ هو $R=k[N_2O_5]$ هانون السرعة المحدد تجريبيا لهذه التجربة هو $R=k[N_2O_5]$ هو $R=k[N_2O_5]$ عانون السرعة المحدد تجريبيا لهذه التجربة هو $R=k[N_2O_5]$ هو $R=k[N_2O_5$

وثابت H_2 وثاب

$$[NO] = 0.002M \; , \; [H_2] = 0.004M \; :$$
 احسب السرعة اللحظية للتفاعل علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \;$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$ علماً بأن $= 0.004M \; , \; [H_2] = 0.004M \; .$

بيانات السرعة اللحظية في **الجدول** 3 تم الحصول عليها للتفاعل $H_2(g) + 2NO(g) \rightarrow H_2O(g) + N_2O(g)$ عند درجة حرارة محددة وتركيز معلوم من NO. كيف تتغير السرعة اللحظية لهذا التفاعل بتغير تركيز H_2 ؟ بناءً على البيانات. هل H_2 جزء من قانون السرعة ؟ فسّر.

الجدول 3 التناعل بين (H ₂ (g و NO(g							
السرعة اللحظية (mol/(L·s)	[H ₂] (mol/L)						
6.00×10^{-3}	0.18						
1.07×10^{-2}	0.32						
1.93×10^{-2}	0.58						

- 6

يحدد، باستخدام آلية تفاعل معيّنة: الخطوة المحددة لسرعة التفاعل (الخطوة الأبطأ) ، المادة الوسيط ، والمعقد المنشّط ، التفاعل المعقد

1 - في الخطوات التالية أجب عما يلي:

step one
$$NO_{2(g)} + NO_{2(g)} \longrightarrow NO_{(g)} + NO_{3(g)}$$
 slow

step two
$$NO_{3(g)} + CO_{(g)} \longrightarrow CO_{2(g)} + NO_{2(g)}$$
 fast

التفاعل المعقد:

آلية التفاعل :

الوسيط: السبب:

الحفاز: السبب:

عدد المعقدات المنشطة:

الخطوة المحددة للسرعة: السبب:

قانون السرعة:

2 - في الخطوات التالية أجب عما يلي:

step 1
$$O_3 \rightarrow O_2 + O$$

step 2 $O_3 + O \rightarrow 2O_2$

التفاعل المعقد:

آلية التفاعل :

الوسيط: السبب:

الحفاز: السبب:

عدد المعقدات المنشطة:

الخطوة المحددة للسرعة: السبب:

قانون السرعة:

3 - في الخطوات التالية أجب عما يلي:

$$E \rightarrow F + D$$
 (f.;+)

$$F+B \rightarrow G$$
 (fart)

التفاعل المعقد:

آلية التفاعل :

الوسيط: السبب:

الحفاز: السبب:

عدد المعقدات المنشطة:

الخطوة المحددة للسرعة: السبب:

قانون السرعة: