
6,7

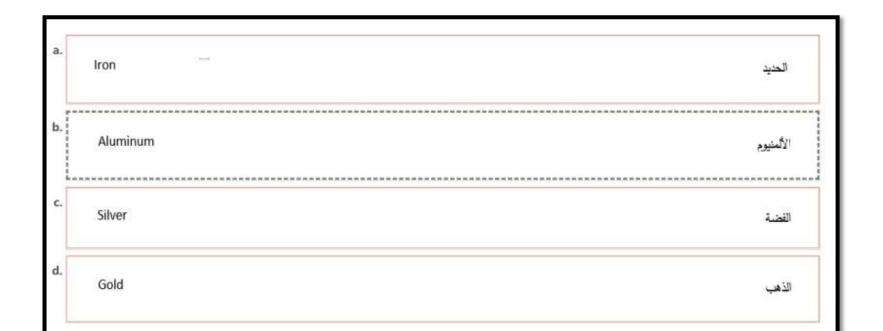
How much energy in joules is supplied by a breakfast containing 170 Cal?	ما مقدار الطاقة بوحدة الجول (J) التي تزودنا بها وجبة افطار تحوي170 Cal؟
-1	70 J
7.11	x 10 ⁵ J
1.7	x 10 ⁵ J
7	11 J O

Which of the following statements is true about the two figures in the table below?

أي العبارات التالية صحيحة فيما يتعلق بالشكلين في الجدول أدناه؟

The energy in X is greater than in Y	الطاقة في X أكبر منها في Y
The energy in Y is $3.6 \times 10^5 \text{ J}$	$3.6 \times 10^5~\mathrm{J}$ الطاقة في Y تُساوي الطاقة الطاقة في Y
he energy in X is 355 Cal	الطاقة في X تُساوي 355 Cal
The energy in Y is greater than in X	الطاقة في Y أكبر منها في X

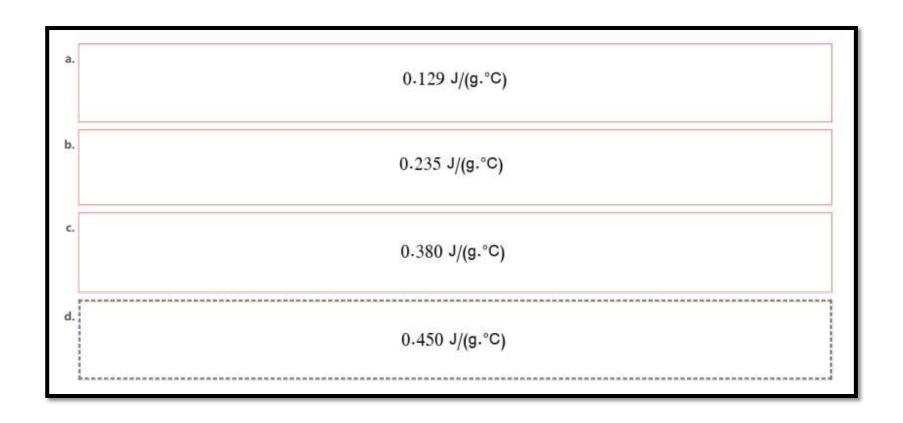
nutritional Calories?


10 Cal
9600 J
86.5 kJ
1000 cal

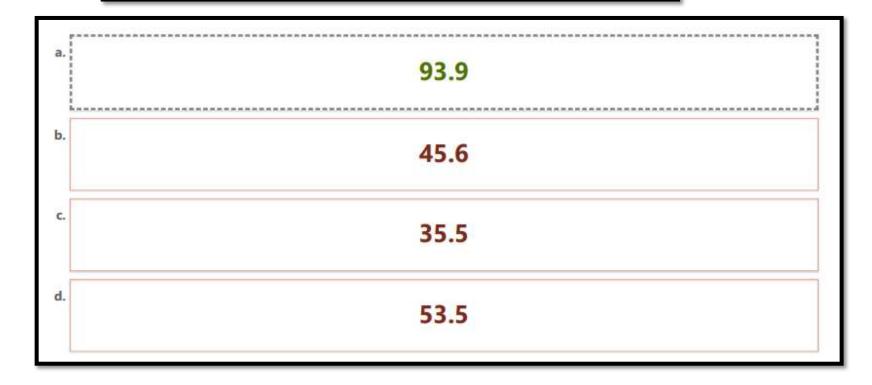
2

A 355 g sample of unknown substance was heated from 22.4 °C to 43.6 °C the substance piece absorbs 6.75 kJ of energy.

Using the table below, which is the substance?


Substance	الذهب	الفضة	الالمنيوم	الحديد
Specific heat	0.129	Silver 0.235	Aluminum 0.897	0.449

When a 360 g piece of hot alloy is placed in 425 g of cold water in a calorimeter, the temperature of the alloy decreases by 205° C, while the temperature of the water increases by 18.7 °C.


What is the specific heat of the alloy?

Specific heat of water= 4.184 (J/g.°C)

time. What is the mass of the piece of iron (g) whose temperature increases by the same amount as the piece of aluminum?

الحديد Iron	الألمنيوم Aluminium	المادة Substance
	47.0 g	الكتلة Mass
0.449	0.897	الحرارة النوعية Specific Heat J/(g. °C)
30.0° C	30.0° C	ΔΤ

Equal masses of of the four metals given in the table below were left to sit in the Sun at the same time and for the same length of time. What is the order of the four metals according to its temperature increase from smallest increase to largest?

متساوية من الفلزات الأربعة الواردة في الجدول أدناه في نفس الوقت ولنفس الفترة الزمنية. ما ترتيب الفلزات لزيادة درجة حرارتها من الأقل إلى الأعلى؟

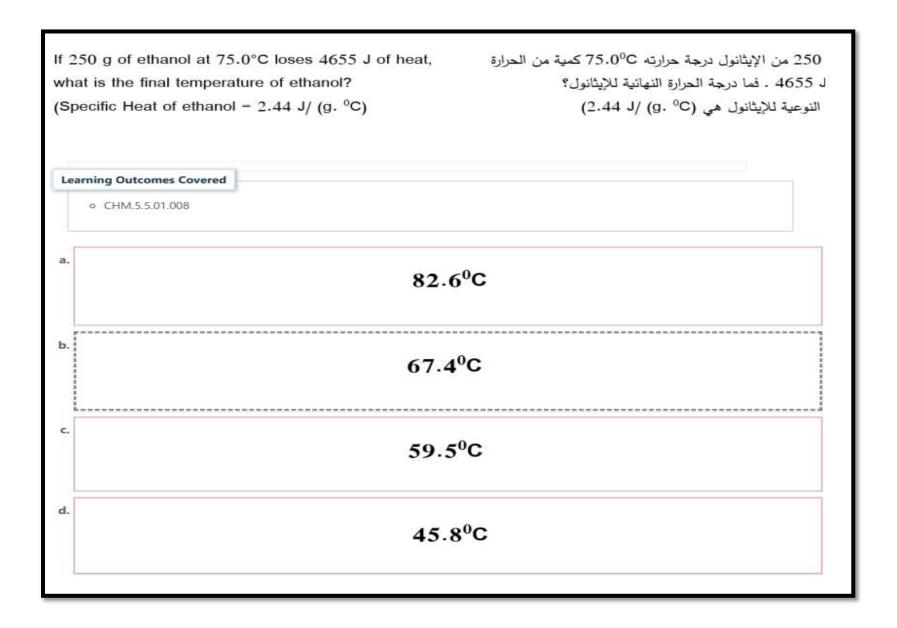
الكالسيوم	السترونشيوم	الرصاص	المغنيسيوم	الفلز Metal
Calcium	Strontium	Lead	Magnesium	
0.647	0.301	0.129	1.023	J /(g.°C) Specific Heat الحرارة النوعية

Learning Outcomes Covered

o CHM.5.5.01.008

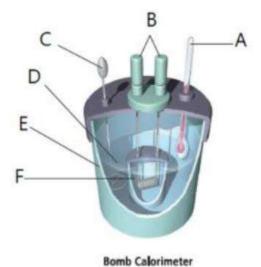
The lowest is calcium, then magnesium, then lead, then strontium

الأقل هو الكالسيوم ثم المغنيسيوم ثم الرصاص ثم السترنشيوم


The lowest is calcium, then strontium, then magnesium, then lead

الأقل هو الكالسيوم ثم السترنشيوم ثم المغنيسيوم ثم الرصاص

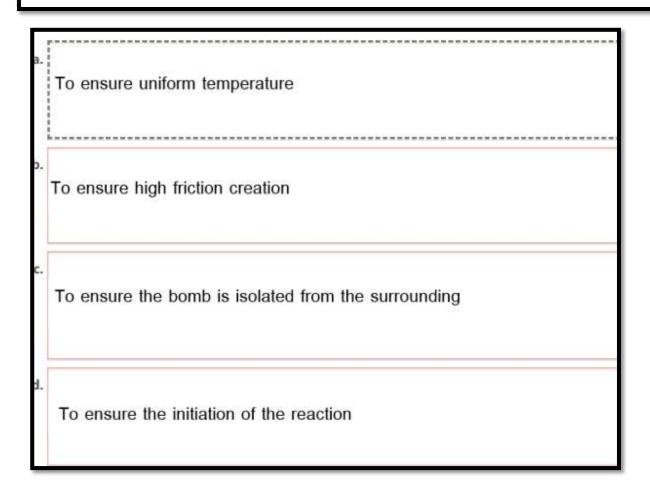
The lowest is magnesium, then calcium, then strontium, then lead

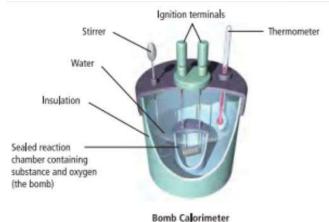

الأقل هو المغنيسيوم ثم الكالسيوم ثم السترنشيوم ثم الرصاص

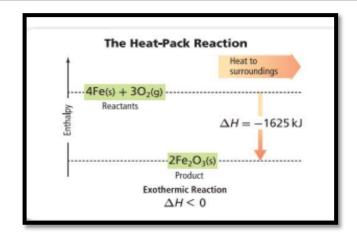
الأقل هو الرصاص ثم السترنشيوم ثم المغنيسيوم ثم الكالسيوم الكالسيو

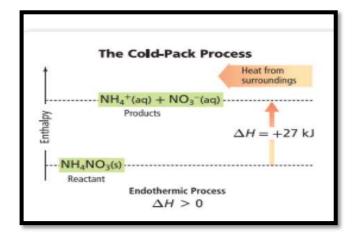
In the figure below, which letter represents where the sample is placed?

في الشكل أدناه، ما الحرف الذي يُمثل المكان الذي توضع فيه العينة؟

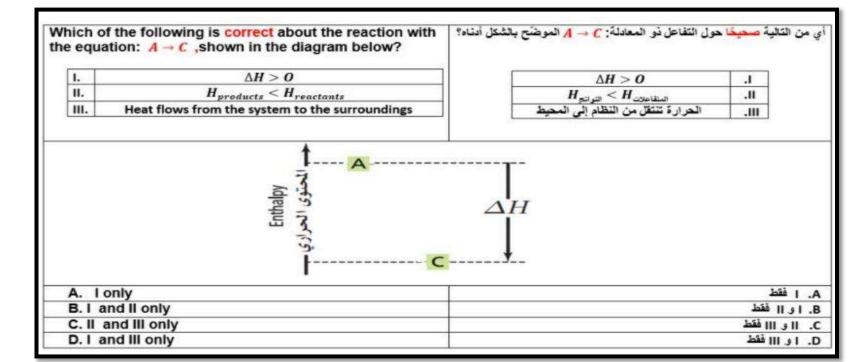


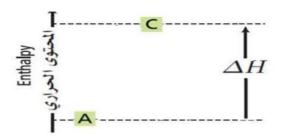

مسعر احتراق

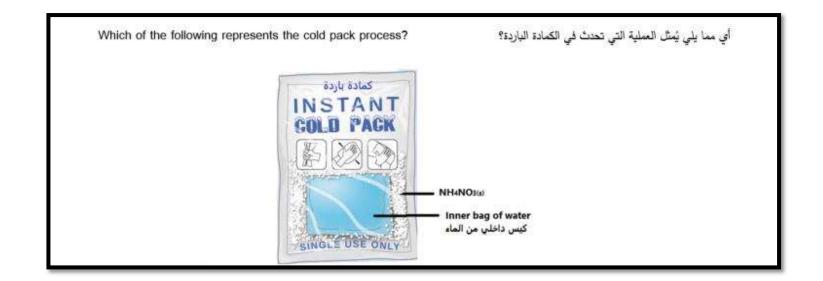

		g statements is incorrect pam-cup calorimeter?	أي العبارات التالية <mark>غير صحيحة</mark> حول المُسعر المصنوع من كوب بلاستيك رغوي؟
Lea	arning Outcomes Covered		3
	o CHM.5.5.01.002		
а.	All reactions carrie	ed out in it occur at constant pressure	تحدث جميع التفاعلات بداخله تحت ضغط ثابت
b.	Used to determine	the specific heat of unknown metal	يستخدم لتحديد الحرارة النوعية لفلز خير معلوم
c	The data to be coll	ected is the specific heat	تتمثل البيانات التي سيتم جمعها في الحرارة النوعية
d.	Worked in the ope	en atmosphere	يعمل في الهواء الطلق

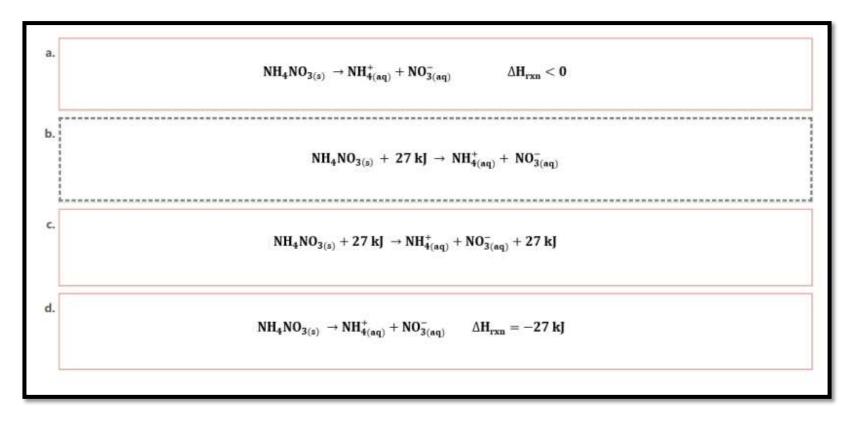

Why is there a law-friction stirrer in bomb calorimeter shown down?

لماذا يوجد محرك منخفض الاحتكاك في مُسعر الاحتراق الموضح أدناه؟

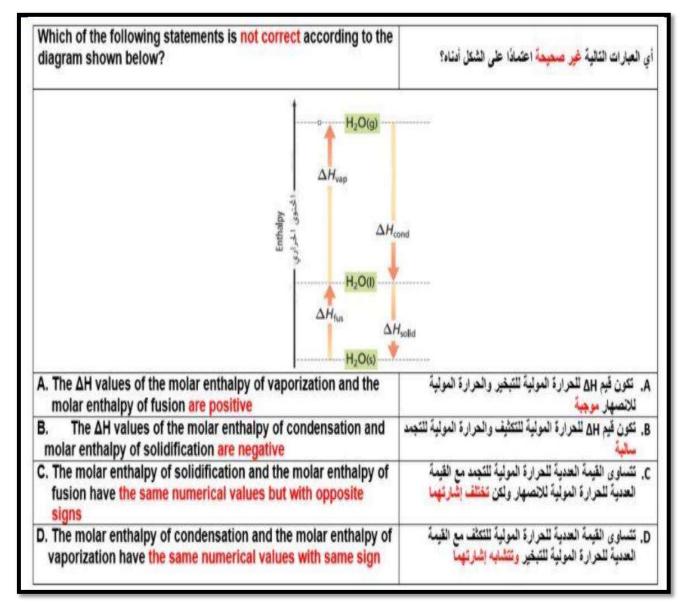


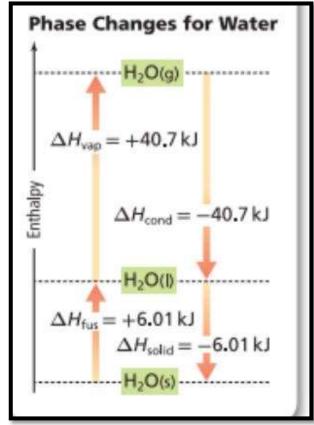


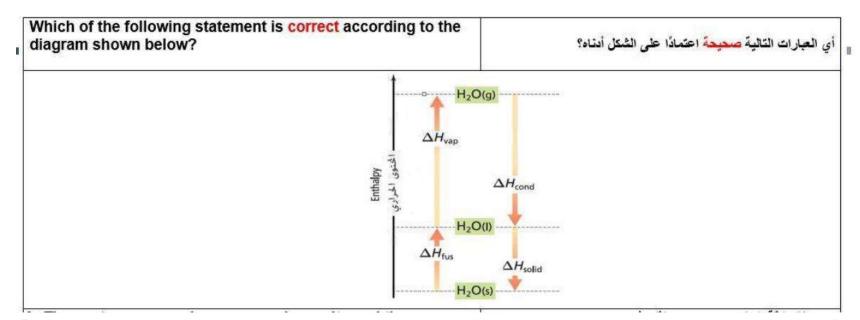


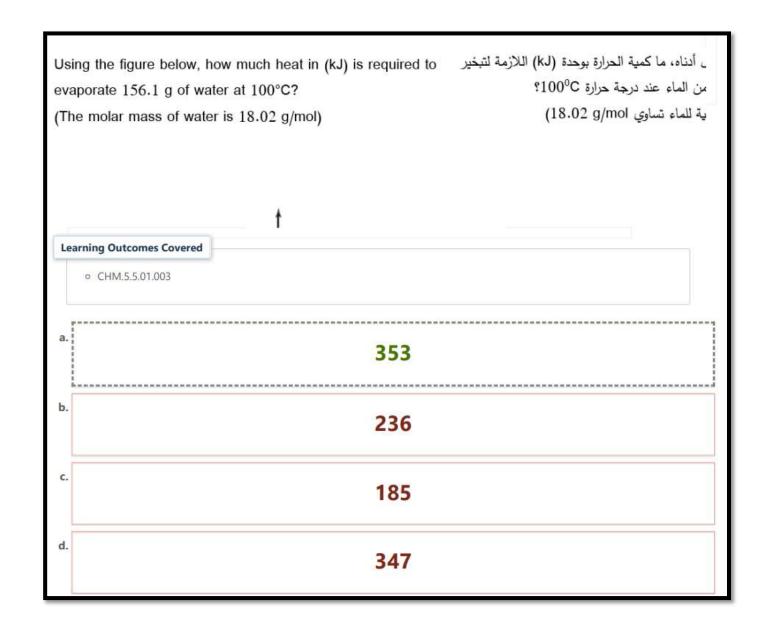


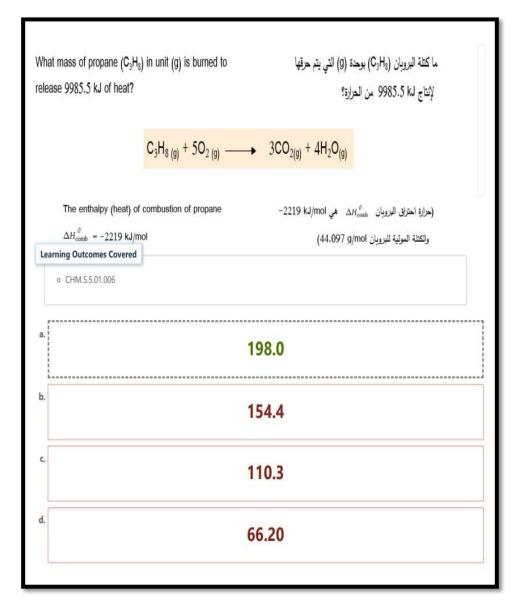
	f the following is correct about the reaction with ition: $A \rightarrow C$, shown in the diagram below?	محيدًا حول التفاعل ذو المعادلة: $A o C$ الموضّع بالشكل	من التالية <u>-</u> اه؟
I.	$\Delta H > O$		
H.	$H_{products} < H_{reactants}$	$\Delta H > 0$	J
III.	Heat flows from the surroundings to the system	$H_{ m pri} < H$ المتقاعلات	.11
		الحرارة تنتقل من المحيط آلى النظام	.111

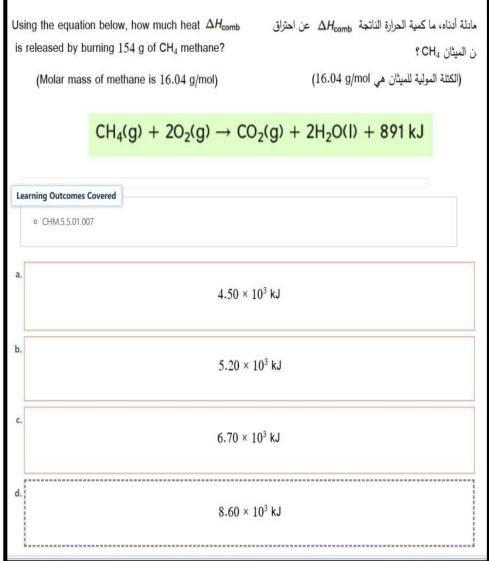


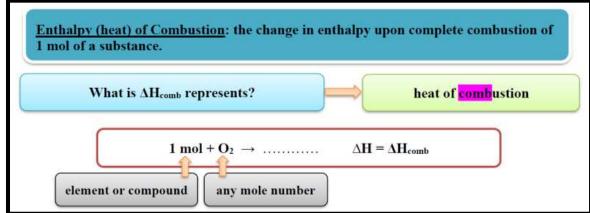

A. I only	A. ا فقط
B. I and III only	B. او ااا فقط
C. II and III only	C. اا و ااا فقط
D. I and II only	D. او اا فقط




في التفاعل الماص للجرارة الموضح أدناه، ما اتجاء انتقال الحرارة؟ In the endothermic reaction shown below, What is the heat flows direction? خليط من هيدروكسيد الباريوم وبلورات ثيوسيانات الأمونيوم a mixture of barrium hydroxide and ammonium thiocyanate crystals لوح رطب a wet board **Learning Outcomes Covered** o CHM.5.5.01.004 From the beaker to the wet board and water من الكأس إلى اللوح الرطب والماء From the mixture to the universe من الخليط إلى الكون From the wet board and water to the beaker من اللوح الرطب والماء إلى الكأس From the system to the surroundings من النظام إلى المحيط







A. The system energy decreases as ice melts and then evaporates	 A. تقل طاقة النظام عند انصهار الثلج ثم تبخره
B. The system energy increases as water vapor condenses and then solidifies	B. تزيد طاقة النظام عند تكثف بخار الماء ثم تجدده
C. The vaporization of water and melting of ice are considered as exothermic process	 أعتبر عمليات تبغّر الماء وصهر الثلج عمليات طاردة للحرارة
D. The condensation and solidification of water are considered as exothermic process	D. تُعتبر عمليات تكثّف الماء وتجمده طاردة للحرارة

combustion of 1 mol of methane produces 891 kJ of heat energy $CH_{4(s)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)} + 891 \text{ kJ}$ combustion of 1 mol of octane produces 5471 kJ of heat energy $C_8H_{18(s)} + \frac{25}{2}O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(l)} + 5471 \text{ kJ}$ combustion of glucose produces big amount of energy $C_6H_{12}O_{6(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)} \qquad \Delta H_{comb} = -2808 \text{ kJ}$ hydrogen and oxygen react together to provide the energy needed to lift the space shuttle $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)} + 286 \text{ kJ}$

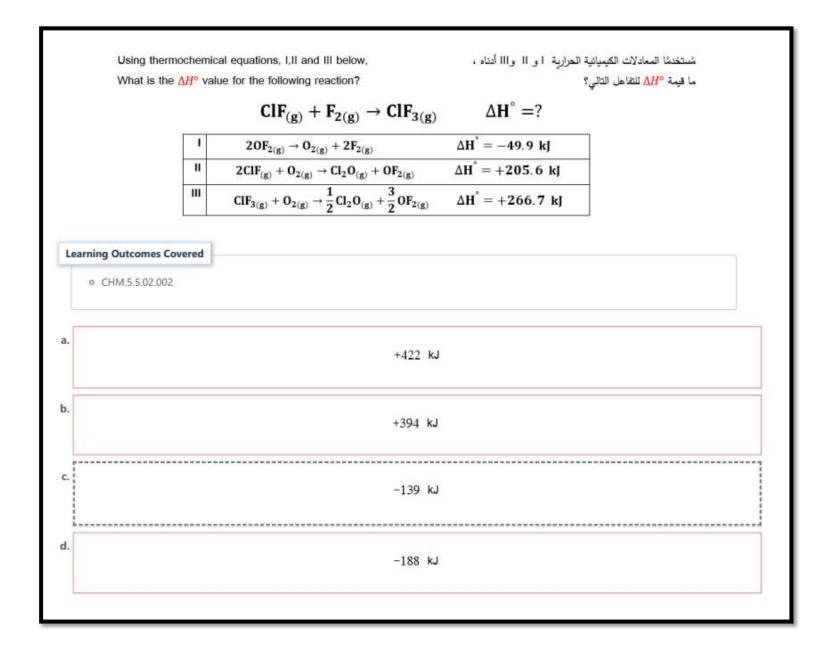
Which of the following equations represents a molar combustion equation?

a.
$$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$$

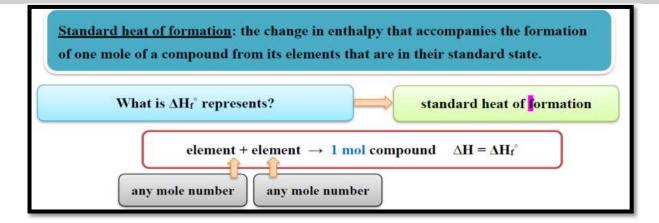
b.
$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

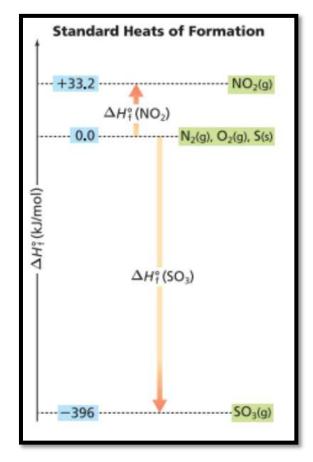
c.
$$C_6H_{12}O_{6(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(g)}$$

d.
$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$$

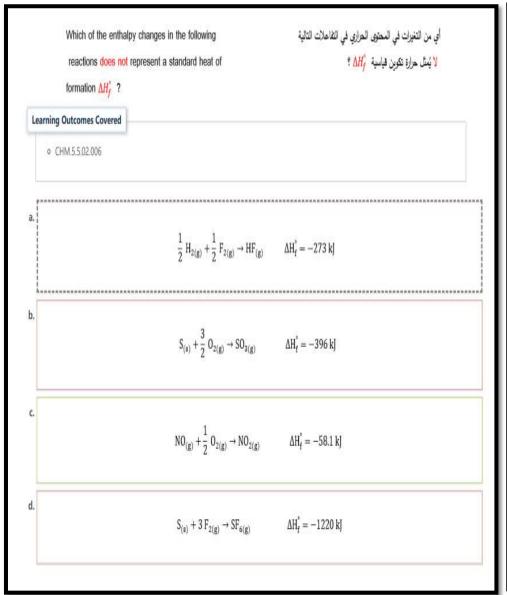

What is the complete thermochemical equation for the combustion of methane CH₄ if you know that $\Delta H_{comb} = -891$ kJ/mol?

a. $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)} + 891$ kJ


b. $CH_{4(g)} + 2O_{2(g)} + 891$ kJ $\rightarrow CO_{2(g)} + 2H_2O_{(l)}$


c.
$$CO_{2(g)} + 2H_2O_{(l)} \rightarrow CH_{4(g)} + 2O_{2(g)} + 891 \text{ kJ}$$

d.
$$CO_{2(g)} + 2H_2O_{(l)} + 891 \text{ kJ} \rightarrow CH_{4(g)} + 2O_{2(g)}$$



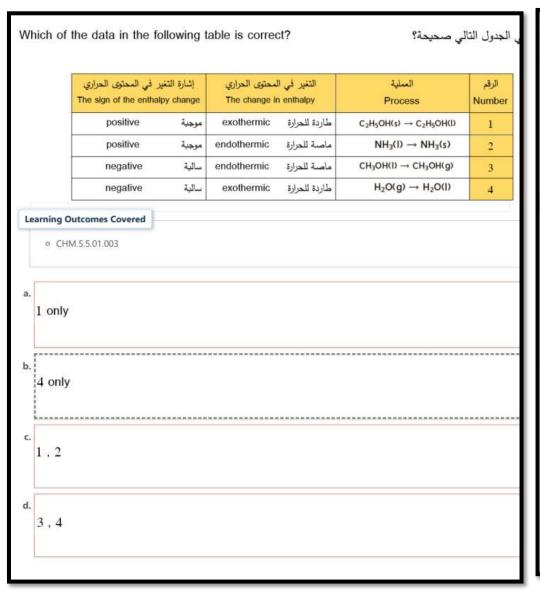
How much is ΔH of the following reaction? ما قيمة ΔH للتفاعل التالي؟ $\text{CO}_{(g)} + 2H_{2(g)} \rightarrow \text{CH}_3\text{OH}_{(l)}$ $CO_{(g)} + 2H_{2(g)} \rightarrow CH_3OH_{(I)}$ Use the thermochemical equations (a, b and c) shown below استخدم المعادلات الكيميانية الحرارية a و b الموضحة أدناه
$$\begin{split} &CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} \\ &H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)} \end{split}$$
 $\Delta H = -284 \text{ kJ}$
$$\begin{split} &H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)} & \Delta H = -286 \text{ kJ} \\ &CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} \to CO_{2(g)} + 2H_2O_{(l)} & \Delta H = -727 \text{ kJ} \end{split}$$
-1297 kJ +1051 kJ -129 kJ +157 kJ

Table 5 Standard Enthalpies of Formation **Formation Equation** $\Delta H_{\rm f}^{\circ}(kJ/{\rm mol})$ Compound -21 $H_2S(g)$ $H_2(g) + S(s) \rightarrow H_2S(g)$ $\frac{1}{2}H_2(g)+\frac{1}{2}F_2(g) \rightarrow HF(g)$ -273HF(g) $S(s) + \frac{3}{2}O_2(g) \rightarrow SO_3(g)$ -396SO₃(q) $S(s) + 3F_2(q) \rightarrow SF_6(q)$ SF₆(g) -1220

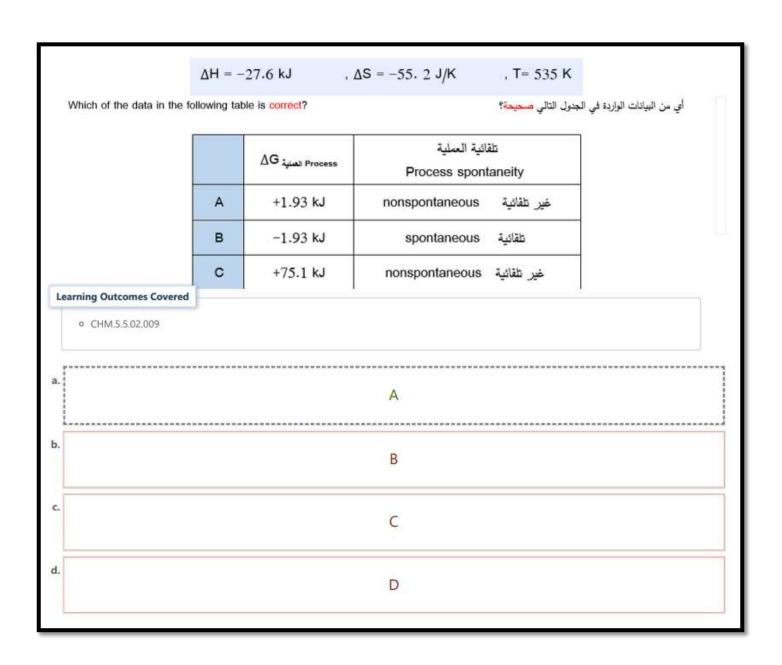
Which of the enthalpy changes in the following تغيرات في المحتوى الحراري في التفاعلات التالية يُمثل حرارة reactions represents a standard heat of formation سية (ΔH°) ؟ $(\Delta H_{\rm f}^{\circ})$? **Learning Outcomes Covered** o CHM.5.5.02.006 $\frac{1}{2} N_{2(g)} + O_{2(g)} \longrightarrow NO_{2(g)}$, $\triangle H = +33.2 \text{ kJ}$ $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$, $\triangle H = -283 \text{ kJ}$ $2S_{(s)} + 3O_{2(g)} \longrightarrow 2SO_{3(g)}$, $\triangle H = -792 \text{ kJ}$ $2\text{Fe}_2\text{O}_{3(s)} \longrightarrow 4\text{Fe}_{(s)} + 3\text{O}_{2(g)}$, $\triangle H = 1625 \text{ kJ}$

المادة Substance	ΔH_f^* (kJ/moi)
$NO_{2(g)}$	33.2
H ₂ O ₍₁₎	-285.8
HNO _{3(aq)}	-207.4
NO _(g)	91.3

What is the $\Delta H_{r,m}^*$ value for the following reaction?


با قيمة $\frac{\Delta H_{rxn}^{*}}{\Delta H_{rxn}}$ للتفاعل التالي؟

$$3NO_{2(g)} + H_2O_{(l)} \rightarrow 2HNO_{3(aq)} + NO_{(g)} \hspace{5mm} \Delta H_{rxn}^{\circ} = ?$$


Learning Outcomes Covered

- o CHM.5.4.02.006
- o CHM.5.4.02.010
- o CHM.5.4.02.021
- o CHM.5.5.02.006

creases?	2CO _(g) + O _{2(g)}	1
	HCI _(g) — HCI _(aq)	2
	NaCl _(s)	3
	2SO _{3(g)}	4
Learning Outcomes Covered]	
o CHM.5.5.02.008		
ı.		
1 only		

1 only 3 only		

Copper (II) sulfide reacts with oxygen under standard conditions to form copper (II)sulfate as shown in the equation below. Which of the following is correct?

يتفاعل كبريتيد النحاس (II) مع الأكسجين في ظل ظروف قياسية لتكوين كبريتات النحاس (II) كما في المعادلة أدناه. أي مما يأتي صحيح؟

CuS_(s) + 2O_{2(g)}
$$\longrightarrow$$
 CuSO_{4(s)}
 ΔH^0_{pxn} = -718.3kJ , ΔS^0_{pxn} = -368.0J/K

العملية (تلقائية / غير تلقائية) Process (Spontaneous / Non-Spontaneous)	△G ⁰ (kJ)	
غير تلقائية Nonspontaneous	+727.5	А
تلقائية Spontaneous	-609.0	В
غير تلقائية Nonspontaneous	+571.8	С
تلقائية Spontaneous	-571.8	D

Figure 12 The addition or removal of a reactant or product shifts the equilibrium in the direction that relieves the stress. Note the unequal arrows, which indicate the direction of the shift.

Describe how the reaction would shift if you added H2 If you removed CH4

$$CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

Equilibrium shifts to the right.

O(g) +
$$3H_2(g) \rightarrow CH_4(g) + H_2O(g)$$
CO(g) Add a reactant,

CHM.5.4.02.003.04 Explain the effect of changing temperature on an equilibrium system

Remove a product,

Equilibrium shifts to the left.

3
$$(CO(g))$$
 + 3H₂(g) ← CH₄(g) + H₂O(g)

Remove a reactant,

CO(g) +
$$3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$
Add a proof

Add a product,

Exothermic Reaction

Equilibrium shifts to the left.

$$\bigcirc$$
 CO(g) + 3H₂(g) \rightleftharpoons CH₄(g) + H₂O(g) + heat

Equilibrium shifts to the right. Lower the temperature,

$$\bigcirc$$
 CO(g) + 3H₂(g) \Rightarrow CH₄(g) + H₂O(g) + heat

Endothermic Reaction

Equilibrium shifts to the right.

1 heat
$$+ N_2O_4(g) \Rightarrow 2NO_2(g)$$

heat Raise the temperature,

Equilibrium shifts to the left.

to the left in the reaction below except .	أدناه عدا
N ₂ C	$_{\rm H}({\rm g}) \rightleftharpoons 2{\rm NO}_2({\rm g}) \ \Delta H^\circ = 57.2 \ {\rm kJ}$
Increasing the pressure	زيادة الضغط
Lowering the system temperature	خفض حرارة النظام
Reducing the concentration of NO ₂	تقلیل ترکیز NO ₂

All of the following changes cause the equilibrium to shift to the left in the reaction below except	ح الانزان إلى جهة اليسار في التفاعل	م التغيرات التالية تُسبب انزيا عدا	920
$CO(g) + 3H_2(g) \rightleftharpoons CH_4(g)$	$+ H_2O(g) \Delta H^\circ = -206.5 \text{ kJ}$		
Raising the system temperature		رفع درجة حرارة النظام	0
Adding a desiccant to the reaction vessel	ي وعاء التفاعل	إضافة عامل مجفف فر	0
Decreasing the concentration of CO		تقلیل ترکیز CO	0
Decreasing the pressure		تقليل الضغط	0

التفاحل في المعادلة أدناه ماص للحرارة. The reaction in the equation below is endothermic. Which of the following is correct? أي مما يأتي <mark>صحيح</mark>؟ $N_2O_4(g) \rightleftharpoons 2NO_2(g) \Delta H^\circ = 57.2 \text{ kJ}$ بئي محمر عديم اللون **Learning Outcomes Covered** o CHM.5.4.02.006 o CHM.5.4.02.010 o CHM.5.4.02.021 o CHM.5.5.02.006 عند وضع وعاء التفاعل في حمام ساخن يظهر اللون 2 Placing reaction vessel in a boiling-water bath the color 2 appears عند وضع وعاء النقاعل في الثلج يظهر اللون 2 Placing reaction vessel in ice the color 2 appears عند وضع وعاء التفاعل في حمام ساخن ينزاح الانزان حهة اليسار Placing reaction vessel in a boiling-water bath the equilibrium shifts to the left عند وضع وعاء النقاعل في النلج ينزاح الانزان جهة اليمين Placing reaction vessel in ice the equilibrium shifts to the right

What will be the result if the volume of the reaction vessel is decreased for the reaction?	ما نتيجة تقليل حجم وعاء التفاعل التالي؟	
$H_{2(g)} + I_{2(g)} =$	⇒ 2HI _(g)	
The concentration of the product increaes	يزداد تركيز الناتج	0
The equilibrium shifts to the right	يتجه الاتزان نحو اليمين	0
The equilibrium does not change	لا يتغير الانتزان	0
The equilibrium shifts to the left	ينّجه الإنتزان نحو البسار	0

When lowering the piston in the figure below, what	عند ضغط المكبس إلى أسفل في الشكل أدناه ماذا يحدث
happens to the next equilibrium reaction?	لتفاعل الاتزان التالي؟
CO _(g)	$+3H_{2(g)} \rightleftharpoons CH_{4(g)} + H_2O_{(g)}$
A -The equilibrium shifts to the left	A - ينزاح موضع الاتزان نحو اليسار
B – Increases the concentration of H ₂	B− یزید من ترکیز H ₂
C -The equilibrium shifts to the right	C - ينزاح موضع الاتزان نحو اليمين
D – Decreases the concentration of CH ₄	D - يقل تركيز CH ₄ - D

فيما يتعلق بأنظمة الاتزان الواردة في الجدول أدناه. Regarding the equilibrium systems given in the table below. Which of the following is correct? أي مما يأتي <mark>صحح</mark>؟ $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$ $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $2N_2H_4(g) + 2NO_2(g) \rightleftharpoons 3N_2(g) + 4H_2O(g)$ **Learning Outcomes Covered** o CHM.5.4.02.021 Decreasing the volume of the reaction vessel تقليل حجم وعاء التفاعل يُسبب إزاحة الأتزان 1 إلى اليمين shifts the equilibrium 1 to the right Decreasing the volume of the reaction vessel تقليل حجم وعاء التفاعل بسبب إزاحة الانزان 2 إلى اليسار shifts the equilibrium 2 to the left Increasing the volume of the reaction vessel زبادة حجم وعاء التفاعل يسبب إزاحة الاتزان 3 إلى اليمين shifts the equilibrium 3 to the right Increasing the volume of the reaction vessel زبادة حجم وهاء التفاعل يسبب إزاحة الانزان 4 إلى اليسار shifts the equilibrium 4 to the left

The reaction below reaches equilibrium at a certain temperature

يصل التفاعل أدناه إلى حالة الانزان عند درجة حرارة معينة،

 $2NbCl_{4(g)} \Rightarrow NbCl_{3(g)} + NbCl_{5(g)}$

, K_{eq} = 6.90 $\times 10^{-4}$, If the equilibrium concentrations are:

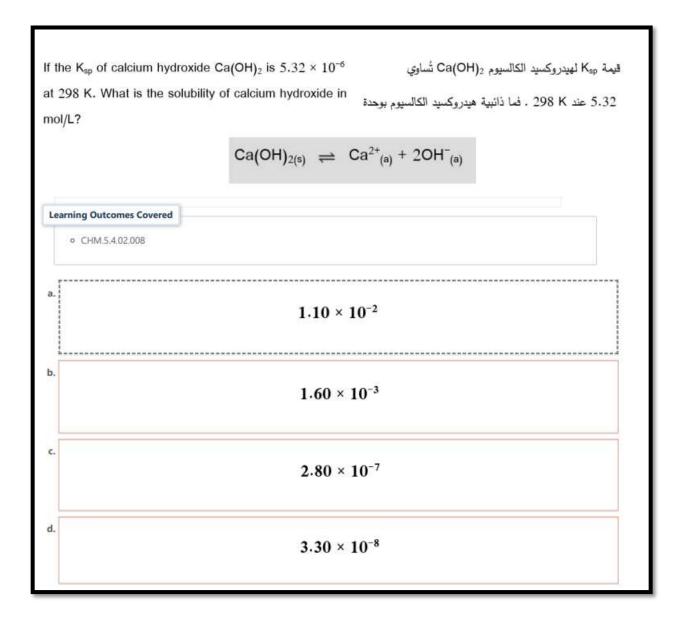
و 10-4× 6.90 = وم ، إذا كانت تراكيز الانزان هي:

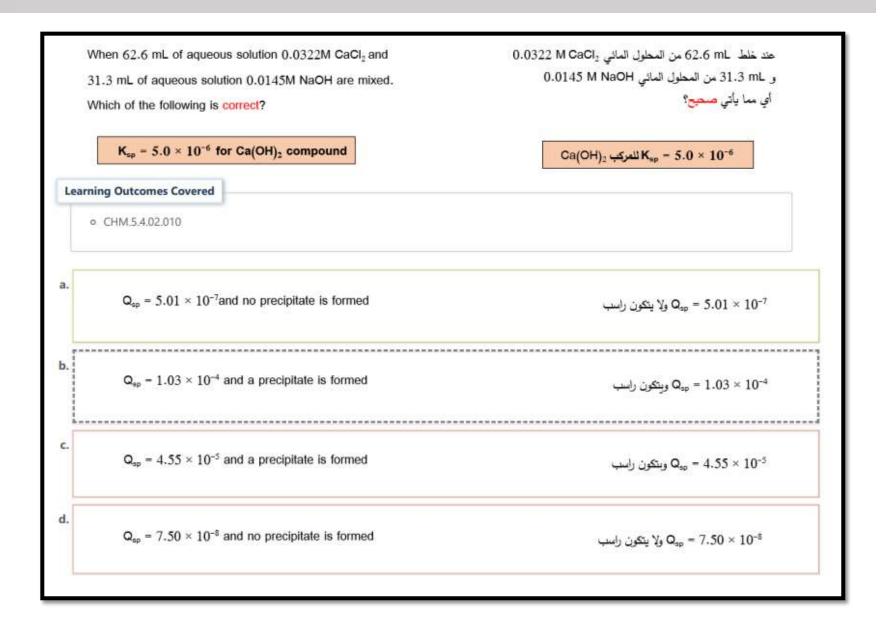
 $NbCl_3 = 0.450 \text{ mol/L}, \quad NbCl_5 = 0.0380 \text{ mol/L}$

What is the equilibrium concentration of NbCl₄?

فما تركيز الاتزان لـ ،NbCl

earning Outcomes Covered


- o CHM.5.4.02.006
- o CHM.5.4.02.010
- o CHM.5.4.02.021
- o CHM.5.5.02.006


4.98 mol/L

2.75 mol/L

1.69 mol/L

5.65 mol/L

If an equal volumes of the solutions $0.0322~{\rm M~CaCl_2}$ and $0.0145~{\rm M~NaOH}$ are mixed, a precipitate of Ca(OH)₂ is predicted. Which of the following is true?

Solubility Product Constants at 298 K for the compound $Ca(OH)_2$ (Ksp = 5.0×10^{-6})

ل حجوم متساوية من محلول CaCl₂ تركيزه 0.0 ومحلول NaOH تركيزه 0.0145 M يتوقع أن ب من Ca(OH)₂. أي مما يأتي صحيح؟

ل الإذابة عند 298 K للمركب 298 (OH) هو (Ksp = 5.0×10^{-6})

Learning Outcomes Covered

- o CHM.5.4.02.008
- o CHM.5.4.02.009

 $Q \text{ sp} = 8.5 \times 10^{-7}$ and a precipitate will not form

Q sp = 8.5 × 10⁻⁷ ولا يتكون راسب

b.

Q sp - 2.6×10^{-5} and a precipitate will form

2.6 ° 10 ° 2.6 ويتكون راسب

C,

 $Q \text{ sp} - 4.9 \times 10^{-10}$ and a precipitate will form

Q sp = 4.9 × ¹γ⁻¹⁰ ويتكون راسب

d

 $Q \text{ sp} = 2.5 \times 10^{-4}$ and a precipitate will not form

Q sp - 2.5 ~ 10⁻⁴ ولا يتكون راسب

Using the data in the corresponding table. What is the average reaction rate expressed in moles of H₂ consumed per liter per second?

a. $1.25 \times 10^{-3} \text{ mol/(L.s)}$

Experimental Data for H2 + CI2 -> 2HCI

Experimental Data for H2 + Cl2 -> 2HCl

d. $7.5 \times 10^{-3} \text{ mol/(L.s)}$

. Hesham Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy

Using the data in the corresponding table. What is the average reaction rate expressed in moles of Cl₂ consumed per liter per second?

a. $2.5 \times 10^{-3} \text{ mol/(L.s)}$

b. $1.25 \times 10^{-3} \text{ mol/(L.s)}$

 Time (s)
 [H₂] (M)
 [Cl₂] (M)
 [HCl] (M)

 0.00
 0.030
 0.050
 0.000

 4.00
 0.020
 0.040

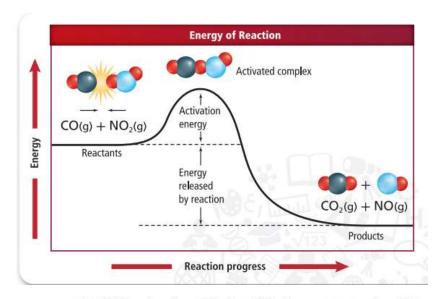
d. $5 \times 10^{-3} \text{ mol/(L.s)}$

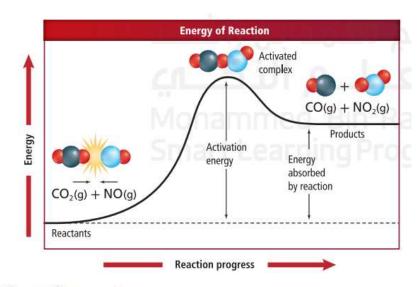
. Hesham Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy

Using the data in the corresponding table. If the average reaction rate expressed as moles of HCl produced is 0.005 mol/(L.s), what is the concentration of HCl after 4 s?

a. 1.25 × 10⁻³ M OUK IV Mr. H Experimental Data for H₂ + Cl₂ → 2HCl

b. 1.25 M

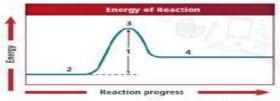

c. 8 M


 Time (s)
 [H₂] (M)
 [Cl₂] (M)
 [HCI] (M)

 0.00
 0.030
 0.050
 0.000

 4.00
 0.020
 0.049

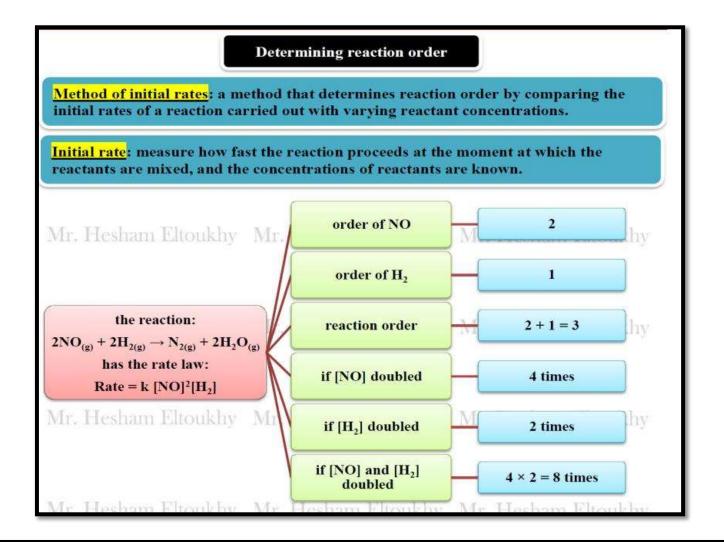
d. 0.02 Mm Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy



- 8) What is the relationship between activation energy and reaction rate?
 - a. The lower the activation energy, the lower the reaction rate
- Mib. The higher the activation energy, the faster the reaction rate esham Elfoukhy
 - c. The higher the activation energy, the slower the reaction rate
 - d. There is no relationship between them
- 9) Which of the following does not describe the rate of a chemical reaction?
 - a. The speed at which the reaction occurs
 - b. The amount of products produced in a certain period of time
- c. The change in the concentration of one of the reactants per unit time
 - d. Change in concentration of a product per unit time

11) Based on the corresponding figure, which of the following choices represents the correct symbols on the drawing?

Energy of Reaction


Mr. Hesham Eltoukhy Mr. Hesh

m Eltoukhy

	choice	1	2	3	4	1
N	ir. Liesha	activation energy	products	activated complex	reactants	oukhy
	ь.	activation energy	reactants	activated complex	products	l
	e.	activated complex	products	activation energy	reactants	l
Z	Ir. Idesha	activated complex	reactants	activation energy	products	oukhy

- 12) What happens during the short-term presence of the activated complex?
 - a. bonds are formed between reactants, and bonds are broken between products
 - Hesham Elfoukhy Mr. Hesham Elfonkhy Mr. Hesham Elfonkhy b. bonds are formed between reactants, and bonds are formed between products
 - c. bonds are broken between reactants, and bonds are broken between products
 - d. bonds are broken between reactants, and bonds are formed between products
- 13) If the reaction A → B is exothermic. What is the relationship between the activation energy of the forward reaction? And the activation energy for the endothermic reversible reaction A ← B?
- M a. activation energy for the exothermic forward reaction > activation energy for the endothermic reverse reaction
- b. activation energy for the exothermic forward reaction < activation energy for the Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy endothermic reverse reaction
 - c. activation energy for the exothermic forward reaction = activation energy for the endothermic reverse reaction
 - d. there is no relationship between them

One-step Reaction: A → B

Reaction Rate: Rate = k [A]

The reaction: aA + bB → products

Reaction Rate: Rate = $k[A]^m[B]^n$

When:

m = a, n = b?

Does the reaction

When the reaction between A and B occurs in one step and with only one activated complex.

Does the reaction: aA + bB → products always occur in one step?

No, because one-step reactions are not common.

Hesham Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy What is the rate law for the reaction $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ that is first order in O_2 and third order in terms of reaction order?

a. Rate = k [NO]²[O₂]
Hesham Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy

b. Rate = $k [NO]^3 [O_2]$

c. Rate = $k [NO]^2 [O_2]^3$

d. Rate = $k [NO][O_2]$

What is the reaction order of the reaction between A and B, if you know its rate

law? Rate =
$$k[A]^2[B]^2$$

a. 1

1121 Plesham Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy

c. 3

d. 4

The reaction: $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ has a rate law: Rate = k [NO]²[O₂].

Does the reaction occur in one step?

- a. no, because the coefficients in the equation = orders in the rate law
- b. no, because the coefficients in the equation # the orders in the rate law
- c. yes, because the coefficients in the equation = the orders in the rate law
- d. yes, because the coefficients in the equation ≠ the orders in the rate law

Assume that a general chemical reaction has a rate law of Rate = $[A]^2[B]^3$ and the rate of the reaction under known conditions is 4.5×10^{-4} mol/(L.min) if the concentrations of A and B are doubled and all other reaction conditions remain constant. How will the reaction rate change?

- a. the reaction speed increases by a factor of 4 to become 1.8 x 10⁻³ mol/(L.min)
- b. the reaction speed increases by a factor of 8 to become $3.6 \times 10^{-3} \text{ mol/(L.min)}$
- . Hesham Eltoukhy Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy c. the reaction speed increases by a factor of 16 to become 7.2 x 10⁻³ mol/(L.min)
- d. the reaction speed increases by a factor of 32 to become 1.44 x 10⁻² mol/(L.min)

VII. Flesham Elloukhy - IVII. Flesham Elloukhy - IVII. Flesham Elloukhy

27) If the rate law for the reaction with data in the table below is:

Rate = k [CH₃N₂CH₃], What is the value of the specific velocity constant k?

h. 4.16 × 10⁻⁴ s⁻¹ toukhy Mr. F

c. $4.34 \times 10^{-8} \text{ s}^{-1}$

d. $8.68 \times 10^{-8} \, \mathrm{s}^{-1}$

Initial [CH ₃ N ₂ CH ₃] (mol/L)	Initial rate mol/(L.s)
0.012	2.5×10^{-6}
0.024	5.0×10^{-6}

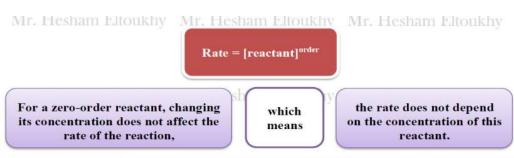
Use the results in the table below to determine the reaction rate law.

$$2NO_{(g)} + 2H_{2(g)} \to N_{2(g)} + 2H_2O_{(g)}$$

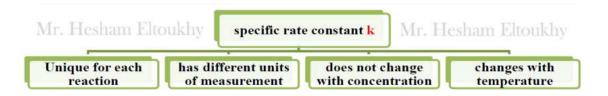
Trial	Initial [NO] (mol/L)	Initial [H ₂] (mol/L)	Initial rate mol/(L.s)
1	5.0×10^{-3}	2.5×10^{-3}	3.0 × 10 ⁻⁵
2	1.5 × 10 ⁻⁴	2.5×10^{-3}	9.0 × 10 ⁻⁵
. I ³ esl	1.5 × 10 7 hv	1.0 × 10 -4	E13.6 × 10 ⁻⁴ M

Hesham Eltoukhy

Hesham Eltoukhy


a.lRate = k [NO]2[H2]2y Mr. Hesham Eltoukhy Mr. Hesham Eltoukhy

b. Rate = $k [NO]^4 [H_2]^3$


c. Rate = $k [NO]^3 [H_2]^4$

d.Rate R No Hesham Eltoukhy Mr. Hesham Eltoukhy

quantity		unit	
symbol	meaning	unit	
Rate	ly Mr. reaction rate loukhy	mol/(L.s)	
k	specific rate constant	different units	
[A]	reactant concentration	mol/L or M	

reaction order	1	2	3	4
	s ⁻¹	M ⁻¹ s ⁻¹	$M^{-2}s^{-1}$	M ⁻³ s ⁻¹
k unit	s^{-1}	L/(mol.s)	L ² /(mol ² .s)	L3/(mol3.s)
rate unit		mol	/(L.s)	


```
What is the unit of the specific rate constant k for a reaction that has the rate law:

Rate = [A]^2[B]?

a. s^-1

b. L^2/(mol^2.s)

c. L^3/(mol^3.s) Eltoukhy Mr. Hesham Eltoukhy

Mr. Hesham Eltoukhy
```