- [_ قانون هس و حساب حرارة التفاعل من خلال قانون هس.
- 2 كتابة معادلة التكوين / حرارة التكوين ، وعلاقتها بثبات
 - حساب حرارة التفاعل من خلال حرارة التكوين.
- ساب حرارة التفاعل من خلال حرارة التكوين ومعادلات التكوين.

القسم الرابع: حساب التغير في المحتوى الحراري

عل : في بعض الأحيان يستحيل قياس حرارة التفاعل (التغير في المحتوى الحراري)(AH) بواسطة المسعر

- 1) هناك تفاعلات تحدث ببطئ شديد مثل تغير الكربون في صورته المتأصلة (الألماس) إلى الكربون في صورته المتأصلة (الجرافيت)
 - $C_{(s, \omega)} \rightarrow C_{(s, \omega)}$
 - 2) هناك تفاعلات (مثل التفاعل السابق أيضاً) تحدث تحت ظروف يصعب إيجادها في المختبر (مثل شرط وجود الضغوط العالية ودرجات الحرارة المرتفعة وعوامل حفازة مضافة)
- **الشكل 12** إن عبارة "الماس يدوم للأبد" تشير إلى قوة ومتانة الماس وتوضح أن تحويل الماس إلى جرافيت يتم ببطء شديد بحيث سيكون من المستحيل قياس التغير في المحتوى
 - 3) هناك تفاعلات تعطى نواتج غير النواتج المطلوبة مثل تكون ثالث أكسيد الكبريت من عناصره الأولية.

 $2S_{(s)} + 3O_{2(g)} \rightarrow 2SO_{3(g)}$ عثال : تفاعل الكبريت مع الأكسجين

(علل _ فسر) هناك مشكلة في حساب حرارة هذا التفاعل بطريقة عملية

> التفسير: تفاعل الكبريت مع الأكسجين لا ينتج 503 فقط، بل ينتج ناتج غير مطلوب وهو SO_2 ثاني أكسيد الكبريت ، الذي يتأكسد جزء منه إلى SO_3 ، ويتبقى جزء آخر (مثل SO_2 الجزء غير المطلوب) (أي يصبح الناتج خليط من SO₂, SO₃)

vww.cnem4u.net	
(ΔH) لتفاعل يستحيل	ولحل المشاكل الثلاثة: يستعمل الكيميائيون طريقة نظرية لإيجاد حرارة التفاعل
: 2	حساب AH له عملياً للأسباب السابقة . بأحد الحلول التالية
	أولاً: باستخدام
	تاتیاً: باستخدام
	ثاثاً : باستخدام
في المحتوى الحراري	أولاً: : استخدام قانون هس للجمع الحراري : " عند جمع معادلتين حراريتين أو أكثر لإنتاج معادلة نهائية للتفاعل ، فإن " مجموع التغير
	للتفاعلات الفردية هو التغير في المحتوى الحراري للتفاعل النهائي " .
باستخدام المعادلات التالية:	$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$, $\Delta H = ? \ kj$: احسب حرارة التفاعل التالي : 1
	$C_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow CO_{(g)}$, $\triangle H = -110 \text{ Kj}$
	$CO_{(g)}$ + ½ $O_{2(g)}$ \rightarrow $CO_{2(g)}$, $\triangle H =$ - 283.5 Kj

مثال 5-: 2 استعمل المعادلتين الكيميائيتين الحراريتين a و b أدناه لإيجاد ΔH لتحلل بيروكسيد الهيدروجين H_2O_2 ، وهو مركب له عدة استعمالات ، منها إزالة لون الشعر ، تزويد محركات الصواريخ بالطاقة . (الجواب : 196 kj)

التحلل الطارد للحرارة وقفازات مطاطية. نفذ العر التوضيحي داخل خزانة

$$2H_2O_{2(l)} \ \to \ 2H_2O_{(l)} \ + \ O_{2(g)}$$

$$a$$
) $2H_{2(g)}+O_{2(g)}~\rightarrow~2H_2O_{(l)}~,~\Delta H=~\text{-572 kj}$

$$b$$
) $~H_{2(g)} + O_{2(g)}~\rightarrow~H_2O_{2\,(l)}~,~\Delta H =~\text{-}188~kj$

(الجواب: 385.4 kj)

ي استعمل المعادلتين a و b لإيجاد ΔH للتفاعل الآتى :

$$2CO_{(g)} + 2NO_{(g)} \rightarrow 2CO_{2(g)} + N_{2(g)} \quad \Delta H = ?$$

a) 2CO
$$_{(g)}$$
 + O $_{2(g)}$ $\;\rightarrow\;$ 2CO $_{2(g)}$, $\;$ ΔH = -566.0 kj

$$b$$
) $N_{2(g)}~+~O_{2(g)}~\rightarrow~2NO_{(g)}~$, $~\Delta H=$ - $180.6~kj$

(الجواب : 521 kj -)

: b للتفاعل الآتي 1789kj ، فاستعمل ذلك مع المعادلة a لإيجاد للتفاعل b _ 1789kj .

 $4Al_{(s)} + 3 MnO_{2(s)} \rightarrow 2Al_2O_{3(s)} + 3Mn_{(s)}$, $\Delta H = -1789 \text{ kj}$

a)
$$4Al_{(s)} + 3O_{2(g)} \rightarrow 2Al_2O_{3(s)}$$
, $\Delta H = -3352 \text{ kj}$

$$b$$
) $Mn_{\,(s)} + O_{2(g)} \,\, \longrightarrow \,\, MnO_{2\,(s)} \quad \ \, , \quad \ \, \Delta H = \,\, ?$

(-220 KJ: ج)

: علماً بأن علماً علماً بأن ڪ $\mathrm{CC}_{(\mathrm{s})}$ + $\mathrm{O}_{2(\mathrm{g})}$ ightarrow

س _ احسب طاقة التفاعل التالى :

$$2CO_{(g)} + \ O_{2(g)} \quad \rightarrow \quad 2CO_{2(g)} \quad , \ \triangle H = \text{-} \ 566 \ Kj$$

,
$$\triangle H = -566 \text{ Kj}$$

$$C_{(s)} + O_{2(g)} \longrightarrow$$

$$CO_{2(g)}$$

$$CO_{2(g)}$$
 , $\triangle H=$ - 393 Kj

(<u>-780 KJ</u>: و)

 $2Al_{(s)} + Fe_2O_{3(s)}
ightarrow 2Fe_{(s)} + Al_2O_{3(s)}$ علماً بأن :

$$2Al_{(s)} + 3/2 O_{2(g)} \rightarrow Al_2O_{3(s)} \qquad , \quad \triangle H^0 = \text{-} \ 1601 \ \text{Kj}$$

$$2Fe_{\ (s)} \ + \ 3/2 \ O_{2(g)} \ \rightarrow \ Fe_2O_{3(s)} \hspace{1cm} , \hspace{1cm} \triangle H^0 = \text{-} \ 821 \ \ Kj$$

س1: إذا كانت قيمة AH للتفاعل الآتي 816.8kj- ، فاستعمل ذلك مع المعادلة a,b لإيجاد حرارة احتراق الهيدروجين:

$$3Fe_{(g)}+4H_2O_{(g)} \ \to \ Fe_3O_{4(g)}+\ 4H_{2(g)} \ , \ \Delta H=-816.8 \ KJ$$
علماً بأن :

$$FeO_{(s)} + H_{2(g)} \rightarrow Fe_{(s)} + H_2O_{(g)}$$
, $\Delta H = +247 \text{ kj}$

$$3\text{FeO}_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow \text{Fe}_3 O_{4(s)}$$
, $\Delta H = -317.6 \text{ kj}$

$$H_{2(g)} \ + \frac{1}{2} \, O_{2(g)} \quad \rightarrow \quad H_2 O_{(g)} \qquad \qquad , \quad \Delta H = \ ? \qquad kj \label{eq:def_eq_3}$$

 $\frac{C_2H_{4(g)}}{C_2}$ باستخدام المعادلات التالية (-1416.2kj)

$$3O_{2(g)} + H_{2(g)} + C_2H_{2(g)} \rightarrow 2H_2O_{(g)} + 2CO_{2(g)}$$
, $\Delta H = -1591 \text{ kj}$

$$H_{2(g)} \quad + \quad C_2 H_{2(g)} \qquad \rightarrow C_2 H_{4(g)} \qquad \qquad , \quad \Delta H = \text{-}174.8 \text{ kj} \label{eq:delta-ham}$$

$$Na_2CO_3.10H_2O_{(s)} o Na_2CO_{3(s)} + 10H_2O_{(g)}$$
 : احسب حرار التفاعل التالى :

باستخدام المعلومات التالية:

$$Na_2CO_3.10H_2O_{(s)} \rightarrow Na_2CO_3.7H_2O_{(s)} + 3H_2O_{(g)}$$
, $\Delta H = +155.2 \text{ kj}$

$$Na_2CO_3.7H_2O_{(s)} \rightarrow Na_2CO_3.H_2O_{(s)} + 6H_2O_{(g)}$$
, $\Delta H = +320.1 \text{ kj}$

$$Na_2CO_3.H_2O_{(s)} \rightarrow Na_2CO_{3(s)} + H_2O_{(g)}$$
 , $\Delta H = +57.3 \text{ kj}$

تمارين إضافية:

(C = 12, H = 1.01)

ا الأيزوأوكتان ${
m C_8H_{18}}$ هو المكون الأكبر للجازولين:

(-5100.07 Kj)

أ ـ مستخدماً البيانات التالية ، احسب حرارة احتراق 1mol من الأيزوأوكتان ،

$$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O, \Delta H^0 = -241.8 \text{ kJ}$$

$$C_{(s)} + O_{2(g)} \rightarrow CO_2(g) \Delta H^0 = -393.5 \text{ kJ}$$

$$8C_{(s)} + 9H_{2(g)} \rightarrow C_8H_{18(l)}, \Delta H^0 = -224.13 \text{kJ}$$

ب ـ كتلة الجالون الواحد من الأيزوأوكتان $2.6~\mathrm{kg}$ ، احسب ΔH لاحتراق جالون واحد من هذه المادة .

 $(\underline{1}.\underline{2}\times\underline{10}^{5}\underline{k}\underline{J}:\varepsilon)$

$$(+28.3~{
m KJ}:_{\mathfrak{C}})$$
 علماً بأن: $2N_{2(g)}+5~O_{2(g)} o 2N_2O_{5(g)}$ علماً بأن: $2H_{2(g)}$ + $O_{2(g)}$ $O_{2(g)}$ $O_{2(g)}$ + $O_{2(g)}$ $O_{2(g)}$ + $O_{2(g)}$ $O_{2(g)}$ + $O_{2(g)}$ +

$$N_2O_{5\,(g\,)}$$
 + $H_2O_{\,(l)}$ \rightarrow 2HNO_{3 (aq)} , $\triangle H = -76.6$ Kj $^{1}/_{2}N_{2(g)}$ + 3/2 $O_{2(l)}$ + $^{1}/_{2}H_{2\,(g)}$ \rightarrow HNO_{3(aq)} , $\triangle H = -174.1$ Kj

لهذا التفاعل ΔH ما قيمة ΔH لهذا التفاعل - 3 مستخدماً المعادلات الحرارية التالية: (<u>-75 kJ</u> - <u>ب</u>)

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$
, $\Delta H = -394 \text{ kJ}$
 $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(l)}$, $\Delta H = -286 \text{ kJ}$
 $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$, $\Delta H = -891 \text{kJ}$

د - 1865 kJ 1856 kJ → -75 kJ - ب 75 kJ - أ

 $(\pm 15.3 \, \text{KJ}: \pm 2)$ باستخدام المعلومات التالي: $2C_{(s)} + 2H_2O_{(g)} \rightarrow CH_{4(g)} + CO_{2(g)}$ باستخدام المعلومات التالية:

$$C_{(s)} \ + \ H_2O_{\,(g)} \ \rightarrow \ CO_{(g)} \ + \ H_{2\,(g)} \quad \ , \ \triangle H = +131.3 \ kj$$

$$CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$$
 , $\triangle H = -41.2 \text{ kj}$

$$CO_{(g)} + 3H_{2\,(g)} \rightarrow CH_{4(g)} + H_2O_{(g)}$$
 , $\triangle H = -206.1 \ kj$

 $(\Delta H = -567.2 \text{ kJ}: \tau)$

5 - وظف المعادلات الحرارية التالية في الإجابة على الأسئلة التي تليها:

2)
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$$
, $\Delta H = -241.8 \text{ kJ/mol}$

$$2NH_{3(g)} + 7/2 O_{2(g)} \rightarrow 2NO_{2(g)} + 3H_2O_{(g)}$$
 , $\Delta H = ??$ احسب حرارة التفاعل

: موظفاً المعادلات أدناه ، احسب حرارة التفاعل التالي: ${
m C}_2{
m H}_{6({
m g})}$ والمعادلات هي $2C_2H_{2(g)} \ + \ 5O_{2(g)} \ \rightarrow \ 4CO_{2(g)} \ + \ 2H_2O_{(g)} \ , \Delta H = -\ 260.2 \ kJ$

$$2C_2H_{6(g)} \ + \ 7O_{2(g)} \ \rightarrow \ 4CO_{2(g)} \ + \ 6H_2O_{(g)} \ , \Delta H = -\ 3123\ kJ$$

$$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(l)}$$
 , $\Delta H = -286 \text{ kJ}$

$$(\underline{\Delta H} = \underline{kJ} : \underline{\tau})$$

7 - وظف المعادلات الحرارية التالية في الإجابة على الأسئلة التي تليها:

1)
$$2N_{2(g)}~+~4O_{2(g)}~~\rightarrow~~4NO_{2(g)}~~,\Delta H=+132.8~kJ$$

2)
$$4H_{2(g)} + 2O_{2(g)} \rightarrow 4H_2O_{(g)}$$
, $\Delta H = -967.2 \text{ kJ}$

3) 3/2
$$N_{2(g)}~+~4.5~H_{2(g)}~\rightarrow~3NH_{3(g)}~,\Delta H=-$$
 137.7 kJ

$$4NH_{3(g)}$$
 + $7~O_{2(g)}$ \rightarrow $4NO_{2(g)}$ + $6H_2O_{(g)}$, $\Delta H=??$ احسب حرارة التفاعل

9 _ مستخدما المعادلات الحرارية التالية: (-1399kj)

$$2Al_{(s)} \ + \ 6HCl_{(aq)} \ \rightarrow \ 2AlCl_{3(aq)} \ + \ 3H_{2(g)} \quad \text{,} \quad \triangle H = \text{-}1049 \ KJ$$

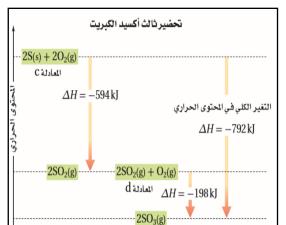
$$HCl_{(g)}$$
 \rightarrow $HCl_{(aq)}$, \triangle $H = -73.5$ KJ

$$H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$$
 , $\triangle H = -185 \text{ KJ}$

$$AlCl_{3(s)}$$
 \rightarrow $AlCl_{3(aq)}$, $\triangle H = -323 \text{ KJ}$

$$2Al_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$$
 . أوجد $\triangle H$

10 - أكمل قيمة حرارة التفاعل:


$$Fe_2O_{3(s)} \ + \ 3CO_{(g)} \ \rightarrow \ 2Fe_{(s)} \ + \ 3CO_{2(g)} \ , \quad \triangle H = -23kj$$

$$3Fe_2O_{3(s)} + \ CO_{(g)} \quad \rightarrow \quad 2Fe_3O_{4(s)} \ + \ CO_{2(g)} \quad \ , \quad \ \triangle H = \text{-}39kj$$

$$Fe_3O_{4(s)} \ + \ CO_{(g)} \quad \rightarrow \quad 3FeO_{(s)} \quad + \quad CO_{2(g)} \quad \ , \quad \quad \triangle H = +18kj$$

$$FeO_{\,(s)} \quad + \quad CO_{(g)} \quad \rightarrow \quad Fe_{(s)} \qquad \quad + \quad CO_{2(g)} \qquad , \quad \quad \triangle H = ? \; kj$$

توظيف مخططات الطاقة في المسائل

<u>مخطط 1:</u>

$$2S_{(s)} + 3O_{2(g)} \rightarrow 2SO_{3(g)}$$
 , $\Delta H = ??$

 ΔH استخدام معادلات كيميائية حرارية معلومة ال ΔH

a)
$$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$$
, $\Delta H = -297 \text{ kj}$

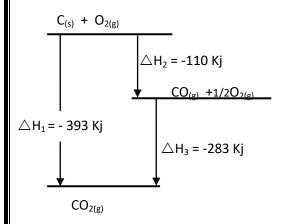
$$b$$
) $2~SO_{2\,(g)} + O_{2(g)}~\rightarrow~2SO_{3(g)}~~,~\Delta H = \text{-}198kj$

2) نتعامل مع المعادلتين الحراريتين b, a لتحقيق (استنتاج) المعادلة الأساسية وبالتالي استنتاج قيمة ΗΔ

بضرب المعادلة
$$a \times a$$
 كما هي

a)
$$2S_{(s)} + 2O_{2(g)} \rightarrow 2SO_{2(g)}$$
, $\Delta H = -594 \text{ kj}$

$$b$$
) $~~2~SO_{2\,(g)}+O_{2(g)}~\rightarrow~2SO_{3(g)}~~,~\Delta H = \text{-}198kj$


$$2S_{(s)} + 3O_{2(g)} \ \rightarrow \ 2SO_{3(g)} \quad \ , \ \Delta H = \underline{\textbf{-792}} \ kj$$

الشكل 2-12 يدل السهم الموجود عن اليسار على إطلاق S عند اتحاد S و O2 لتكوين المعادلية O_2 شم يتحد SO_2 ميع O_2 لتكوين SO_2 SO₃ (المعادلـة d) عنــد إطلاق 198 kJ (الســهم الأوسط). إن التغير الكلي في الحرارة (مجموع العمليتين) يمثله السهم الأيمن. وجد التغير في المحتوى الحراري لتحلّل SO3

<u>، خطط 2</u>

 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$, $\triangle H_1 = -393 \; kj$: يتكون ثاني أكسيد الكربون في خطوة واحدة ، وينتج الطاقة التالية والطاقة التالية واحدة ، ويمكن أيضا أن يتم في خطوتين وينتج نفس الطاقة :

مخطط الطاقة لتوضيح قانون هس

$$C_{(s)} + \frac{1}{2} O_{2(g)} \rightarrow CO_{(g)}, \triangle H_2 = -110 \text{ kj}$$


$$CO_{(g)} + \sqrt[1]{2} \; O_{2(g)} \; \to \; CO_{2(g)}$$
 , $\triangle H_3 = \text{-}283 \; kj$

$$\triangle H_1 = \triangle H_2 + \triangle H_3$$
: نلاحظ أن

مناقشة

www.chem4u.net

مخطط 3: يمثل الشكل البياني المجاور قانون هس للتفاعل

استخدم الشكل $Sn_{(s)} + 2Cl_{2(g)}$ \longrightarrow $SnCl_{4(l)}$ البياني لتحديد قيمة ΔH لكل خطوة من الخطوات التالية

$$\begin{split} Sn_{(s)} + Cl_{2(g)} &\to SnCl_{2(s)} \quad \text{, } \Delta H = ? \\ SnCl_{2((s)} + Cl_{2(g)} &\to SnCl_{4(l)} \quad \text{, } \Delta H = ? \end{split}$$

$$Sn_{(s)} + 2Cl_{2(g)} \longrightarrow \ SnCl_{4(l)} \quad \ \, , \Delta H = ? \label{eq:sns}$$

($\Delta H = -511.3 \text{ k J}$ ، $\Delta H = -186.2 \text{ k J}$ ، $\Delta H = -325.1 \text{ k J}$: الإجابة

Standard Enthalpy (heat) of formation : ΔH_f^0 حرارة التكوين القياسية

 \rightarrow C₂H₆₍₁₎ , \triangle H = - 84 kj/mol

 \rightarrow AgCN_(g), $\triangle H = + 146$ kj/mol

" هي التغير في المحتوى الحراري الذي <mark>يرافق تكوين مول واحد من المركب</mark> في الظروف القياسية من عناصره(في حالاتها القياسية)"

الحالة القياسية للعنصر : هو حالة العنصر عند $298K = 25^{\circ}C$ الحالة القياسية للعنصر

ملاحظات:

1 - الحالة القياسية للماء هي السيولة ، وليس الحالة الصلبة أو الغازية

2 - الحالة القياسية للحديد هي الحالة الصلبة وليس السائلة

3 - حرارة التكوين للعنصر في الحالة القياسية = صفر

تذكر : جدول دوري للحالات الفيزيائية للعناصر : ناقش مع المعلم الصورة الذرية الجزيئية للعناصر

	1				gas	ses			١	iqui	ds			S	olic	Is		18
1	H	2	_				-		1				13	14	15	16	17	z He
2	3 Li	4 Ве											5 B	e C	7 N	å O	ę F	10 Ne
3	Na Na	12 Mg	3	4	5	6	7	8	8	10	11	12	19 Al	14 Si	15 P	18 S	17 Cl	ie Ar
4	19 K	zo Ca	gi Se	zz Ti	88 V	g4 Cr	26 M II	ze Fe	27 Co	zв Ni	g9 Cu	эо Zn	gi Ga	se Ge	aa As	34 Se	ss Br	ss Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	48 Pd	47 Ag	48 Cd	49 In	50 Sn	Sb	52 Te	53 I	54 Xe
в	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 I r	78 Pt	79 Au	80 Hg	81 Tl	es Pb	83 Bi	64 Po	as At	es Rn
7	e7 Fr	ee Re	**	104 R f	105 Db	106 Sg	107 Bh	100 Hs	109 Mt	110	111	112		W				
	* Le	t hanides	57 La	58 Ce	69 Pr	60 Nd	en Pm	ez Sm	69 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Trn	70 Yb	71 Lu	
	•* A	ctinides	89 Ac	90 Th	91 Pa	92 U	95 Np	94 Pu	95 Am	ee Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	108 Lr	

حساب التغير [14] في المحتوى الحراري

ياء الثاني عشر – متقدم – 2023

إعداد أ/إبراهيم النجار

كيفية كتابة معادلات التكوين ومعادلات حرارة التكوين (استخدم الجدول ، وناقش المعادلات من خلال قيم حرارات التكوين)

س : وظّف ملحق الجدول التالي لكتابة تفاعل تكوين كل من المركبات التالية من عناصرها الأولية ، واكتب H كجزء من التفاعل ، وحدد قيمة H △ للتفاعل العكسي

العكسي $ riangle H^0_{\mathrm{f}}$	من الجدول $\triangle ext{H}^0_{ ext{ f}}$	المعادلة الحرارية بدلالة H $ riangle$	المركب
			$Cr_2O_{3(s)}$
- 227.4 Kj	+ 227.4 Kj	$2C_{(s)} + H_{2(g)} \rightarrow C_2H_{2(g)}$	$C_2H_{2(g)}$
+ 296.8 Kj	- 296.8 Kj	$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$	$\mathrm{SO}_{2(\mathrm{g})}$
			ZnSO ₄
	- 771.4 Kj		CuSO ₄
	- 104 Kj		NH ₃
			NH ₄ Br
			$C_2H_{6(g)}$
			$H_2O_{(g)}$
			Cs ₂ SO ₄
			NaHCO ₃

قيم حرارة التكوين لبعض المواد

(المار) $\Delta H_{\rm f}^{\circ}$ (kJ/mol) (تراكيز المحاليل المائية لهذه المواد يساوى $\Delta H_{\rm f}^{\circ}$

المسادة	Δ H $_{\mathrm{f}}^{\circ}$	المسادة	Δ H $_{ m f}^{\circ}$	المسادة	Δ H $_{\mathrm{f}}^{\circ}$	المسادة	Δ H $_{ m f}^{\circ}$
Ag(s)	0	CsCl(s)	-443.0	H₃PO₄(aq)	-1271.7 [°]	NaBr(s)	-361.1
AgCl(s)	-127.0	Cs ₂ SO ₄ (s)	-1443.0	H ₂ S(g)	-20.6	NaCl(s)	-411.2
AgCN(s)	146.0	Cul(s)	-67.8	H ₂ SO ₃ (aq)	-608.8	NaHC O ₃ (s)	-950.8
Al_2O_3	-1675.7	CuS(s)	-53.1	H ₂ SO ₄ (aq)	-814.0	NaN O ₃ (s)	-467.9
BaCl ₂ (aq)	-855.0	Cu ₂ S(s)	-79.5	HgCl ₂ (s)	-224.3	NaOH(s)	-425.8
BaS O ₄	-1473.2	CuSO ₄ (s)	-771.4	Hg ₂ Cl ₂ (s)	-265.4	Na ₂ CO ₃ (s)	-1130.7
BeO(s)	-609.4	F ₂ (g)	0	Hg ₂ SO ₄ (s)	-743.1	Na ₂ S(s)	-364.8
$BiCl_3(s)$	-379.1	FeCl ₃ (s)	-399.49	l ₂ (s)	0	Na ₂ SO ₄ (s)	-1387.1
$Bi_2S_3(s)$	-143.1	FeO(s)	-272.0	K(s)	0	NH₄Cl(s)	-314.4
Br ₂	0	FeS(s)	-100.0	KBr(s)	-393.8	O ₂ (g)	0
CCI ₄ (I)	-128.2	Fe ₂ O ₃ (s)	-824.2	KMn O ₄ (s)	-837.2	P ₄ O ₆ (s)	-1640.1
CH₄(g)	-74.6	Fe ₃ O ₄ (s)	-1118.4	КОН	-424.6	P ₄ O ₁₀ (s)	-2984.0
$C_2H_2(g)$	227.4	H(g)	218.0	LiBr(s)	-351.2	PbBr ₂ (s)	-278.7
$C_2H_4(g)$	52.4	H ₂ (g)	0	LiOH(s)	-487.5	PbCl ₂ (s)	-359.4
$C_2H_6(g)$	-84.0	HBr(g)	-36.3	Mn(s)	0	SF ₆ (g)	-1220.5
CO(g)	-110.5	HCl(g)	-92.3	MnC I ₂ (aq)	-555.0	SO ₂ (g)	-296.8
$CO_2(g)$	-393.5	HCl(aq)	-167.159	$Mn(N O_3)_2(aq)$	-635.5	SO₃(g)	-454.5
CS ₂ (I)	89.0	HCN(aq)	108.9	Mn O ₂ (s)	-520.0	SrO(s)	-592.0
Ca(s)	0	HCHO	-108.6	MnS(s)	-214.2	TiO ₂ (s)	-944.0
$CaCO_3(s)$	-1206.9	HCOOH	-425.0	$N_2(g)$	0	TII(s)	-123.8
CaO(s)	-634.9	HF(g)	-273.3	NH₃(g)	-45.9	UCI ₄ (s)	-1019.2
$Ca(OH)_2(s)$	-985.2	Hl(g)	26.5	NH ₄ Br(s)	-270.8	UCI ₆ (s)	-1092.0
Cl ₂ (g)	0	H ₂ O(I)	-285.8	NO(g)	91.3	Zn(s)	0
$Co_3O_4(s)$	-891.0	H ₂ O(g)	-241.8	NO ₂ (g)	33.2	ZnCl ₂ (aq)	-415.1
CoO(s)	-237.9	H ₂ O ₂ (I)	-187.8	N ₂ O(g)	81.6	ZnO(s)	-350.5
$Cr_2O_3(s)$	-1139.7	H ₃ PO ₂ (I)	-595.4	Na(s)	0	ZnSO ₄ (s)	-982.8

إعداد أ/إبراهيم النجار

س: أكمل الجدول التالي بكتابة قيمة حرارة التكوين في المكان الفارغ:

حرارة التكوين	التغير الكيميائي
-393.5kj	$C_{(s)}$ + $O_{2(g)}$ \rightarrow $CO_{2(g)}$; $\triangle H = -393.5 \text{ Kj}$
	$N_{2(g)}$ + $3H_{2(g)}$ \leftrightarrows $2NH_{3(g)}$; $\triangle H$ = - 91.8 Kj
	$Zn_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow ZnO_{(s)}$; $\triangle H = -330.5 \text{ Kj}$
	$H_{2(g)} + I_{2(g)} \stackrel{\leftarrow}{\Longrightarrow} 2HI(g) ; \triangle H = +53 \text{ Kj}$
	$H_{2(g)} + I_{2(s)} \Longrightarrow 2HI(g)$; $\triangle H = +53 \text{ Kj}$

■ **الشكل 14** ثالث أكسيد الكبريت يمتزج مع الماء في الهواء الجوي لتكوين حمض الكبريتيك (H₂SO₄)، وهو حمض قوى يصل إلى الأرض على هيئة مطر حمضى. يدمر المطر الحمضي الأشجار والعقارات ببطء.

$$S_{(s)} + 3/2~O_{2(g)}~\to~SO_{3(g)}~~,~~\Delta H^o{}_f = -396~kj:$$
حرارة تكوين ثالث أكسيد الكبريت

تخير1: ناقش حرارة التفاعل التالي ثم تخير الإجابة الصحيحة:

$$C_{(s)}$$
 + $O_{2(g)}$ \rightarrow $CO_{2(g)}$, $\triangle H$ = -393.5 Kj

 CO_2 حرارة احتراق CO_2 وتكوين CO_2 حرارة احتراق CO_2 حرارة احتراق اكربون CO_2 حرارة احتراق احتراق CO_2

س1: هام: ناقش في هذا المثال إمكانية حرارة التكوين والإحتراق، مع تعديل المعادلات إن أمكن.

$$1/2 \ N_{2(g)} + O_{2(g)} \rightarrow \ NO_{2(g)}$$
 , $\Delta H^{o}_{f} = +33.2 KJ$

 $298~{
m K}$ من عناصره في حالاتها القياسية عند درجة حرارة ${
m B}_5{
m H}_{9(g)}$ من عناصره في حالاتها القياسية عند درجة حرارة و ضغط atm ؟

$$5/2 \; B_{2(g)} \; + \; 9/2 H_{2(g)} \; \longrightarrow \; B_5 H_{9(g)} \; \text{-} \; \hookrightarrow$$

$$5B_{(g)} + 9H_{(g)} \rightarrow B_5H_{9(g)}$$
 - 1

$$2B_{(s)} + 3BH_{3(g)} \rightarrow B_5H_{9(g)} - 2$$

$$5B_{(s)} + 9/2 H_{2(g)} \rightarrow B_5 H_{9(g)} - \varepsilon$$

تخير $_{(g)}$: فيما يتعلق بالتفاعل : $_{(g)} = 792 \; ext{KJ}$ بارات التالية صحيحة : $_{(g)} = 280$ فيما يتعلق بالتفاعل : $_{(g)} = 280$ بارات التالية صحيحة :

$$S_{(S)}$$
 ب - حرارة تكوين $SO_{3(g)}$ ب - حرارة احتراق

أ - التفاعل ماص للحرارة

د - حرارة احتراق
$$S_{(s)} = S_{(s)}$$
 حرارة التفاعل

ج - حرارة تكوين $SO_{3(g)} = SO_{3(g)} = -$ حرارة التفاعل د - حرارة احتراق التفاعل

 $2H_{2(g)} + O_{2(g)} + 2H_2O_{(g)} + 483.6 ext{ Kj}$ علل : في التفاعل التالي $2H_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)}$ لا تمثل الحرارة الناتجة حرارة تكوين الماء ، وليست حرارة احتراق

لأن الماء المتكون في المعادلة (mol 2) من الماء وليس مو لا و احدا ، وحرارة التكوين تعرف بدلالة مول و احد من الناتج الواحد ، وحرارة الاحتراق تعرف بدلالة مول واحد من المتفاعل الواحد مع الأكسجين.

 ${
m CO}_2$ على التفاعل التالي ${
m CO}_{2({
m g})} + {
m 20}_{2({
m g})}
ightarrow {
m CO}_{2({
m g})} + 283 {
m Kj}$ لا تعتبر الحرارة الناتجة حرارة تكوين ${
m 200}_{2({
m g})}$

 25° وضغط 1atm لأن 100_{\circ} الناتج لا يتكون من عناصره في حالتها القياسية عند درجة حرارة

علل $NaOH_{(aq)} + HCl_{(aq)}
ightarrow NaCl_{(aq)} + H_2O_{(l)} + 57.1 \; ext{Kj}$ لا تعتبر الحرارة الناتجة حرارة تكوين الماء عال

لأن الماء لم ينتج من عناصره الأولية وهما (H2 , O2) في حالتهما القياسة

كلمة غير منسجمة:

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$$
 (2

$$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$$
 (1

$$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$
 (4

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$
 (3

التبرير:

البديل هو :

كلمة غير منسجمة:

$$\begin{array}{cccc} C_{(s)} + O_{2(g)} & \to & CO_{2(g)} \ (\ 2 \\ SO_{2(g)} + {}^{1}\!\!/_{2}O_{2(g)} & \to & SO_{3(g)} \ (\ 4 \\ \end{array}$$

$$NO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{2(g)}$$
 (1)
 $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$ (3)

التبرير:

البديل هو :

إعداد أ/إبراهيم النجار

حساب التغير | 17 | في المحتوى الحراري

كيمياء الثاني عشر – متقدم – 2023

س1: تصنيف: ضع علامة (√) في المربع المناسب:

حرارة	حرارة	حرارة	حرارة	حرارة	<i>a</i> 1			
التجمد	الانصهار	التكثيف	التبخير	تكوين	حرارة	حرارة	حرارة	t 1 ·t1
المولارية	المولارية	المولارية	المولارية		احتراق	تكوين	تفاعل	التفاعل
ΔH_{solid}	ΔH_{fus}	ΔH_{cond}	ΔH_{vap}	واحتراق	0	0	0	
sond		cond	ΔΠ _{vap}	$\Delta H^{o}_{c,f}$	ΔH^{o}_{c}	ΔH^{o}_{f}	ΔH^{o}	
				C,1				
						√	√	$1/2H_{2(g)} + 1/2Cl_{2(g)} \rightarrow HCl_{(g)}, \triangle H = -92.5kj$
						•		$\frac{1/2\Pi_2(g)}{(g)} + \frac{1/2\Pi_2(g)}{(g)} + \frac{1}{\Pi_2(g)} + \frac{1}{\Pi_2($
								CH 20 CO 2H O AH 000H;
								$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}, \triangle H = -890Kj$
								$C_{(s)} + O_{2(g)} \rightarrow CO_{2(s)}, \ \triangle H = -393.5 \text{ Kj}$
								$HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(1)}, \triangle H = -57.5Kj$
								$\frac{11\text{Cl}(\text{aq}) + 11\text{dOII}(\text{aq})}{27.3\text{Hz}}$
								GH 7/20 200 2H 0 AH 15(0H)
								$C_2H_{6(g)} + 7/2 O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)}, \triangle H = -1560Kj$
								$6C_{(s)} + 8H_{2(g)} \rightarrow 2C_3H_{8(g)}, \triangle H = -104Kj$
								$CO_{(g)} + \frac{1}{2} O_{2(g)} \rightarrow CO_{2(g)} + 283 \text{ Kj}$
								(g) 2(g)
								2F ₂ + 2/2 O
								$2Fe_{(s)} + 3/2 O_{2(g)} \rightarrow Fe_2O_{3(s)}, \triangle H = -850.5Kj$
								$N_{2(g)} + O_{2(g)} + 106.5 \text{ kj} \rightarrow 2NO_{(g)}$
ı ———				1			1	1

 $C_2H_{6(g)} + 7/2 O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)}$, $\triangle H = -1560 {
m Kj}$ بن التفاعل التالي $2CO_{2(g)} + 3H_2O_{(l)}$. توقع قيمة H م إذا تحول الماء السائل إلى بخار ، مع التعليل .

س3: أمعن النظر في المعادلة التالية ثم أجب عما يلي:

$$C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)} + 1235.4 \, kJ$$
 ه صنف التفاعل حر ارياً \Box ماذا تتوقع لقيمة ΔH إذا نتج ماء سائل بدلاً من بخار الماء ؟ مع التبرير .

إعداد أ/إبراهيم النجار

حساب التغير 18 في المحتوى الحراري

صنف التفاعل حرارياً ... التفاعل طارد للحرارة .
 ماذا تتوقع لقيمة ΔΗ إذا نتج ماء سائل بدلاً من بخار الماء ؟ مع التبرير تزداد كمية الطاقة المنطلقة ، فتزداد قيمة ΔH ، ويعزى ذلك إلى أن الحرارة المنطلقة من تكون المّاء السائل أكبر من المنطلقة في حالة بخار الماء. (تحول البخار إلى ماء سانل يطلق طاقة.

حساب حرارة التفاعل باستخدام حرارات تكوين المركبات

ملاحظة هامة : غاز ثالث أكسيد الكبريت SO₃ ، غاز خانق يتسبب في إنتاج <mark>المطر</mark> الحمضي عندما يختلط بالرطوبة الموجودة في الجو (شكل 2-13)

مقدمة: قانون هس يستنتج التغير في المحتوى الحراري لتفاعل من خلال تفاعلات أخرى ناتجة من تجارب مختبرية لكن حساب وتسجيل قيم ΔH لكافة التفاعلات الكيميائية المعروفة مهمة صعبة جداً .

لكن بمعرفة حرارة تكوين أي مركب يمكن حساب ΔH لأي تفاعل بسهولة ويُسر .

أمثلة مختبرية لحرارة التكوين:

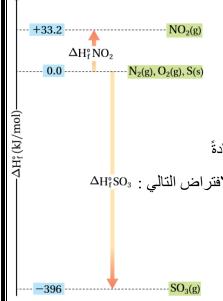
مناقشة حرارة التكوين لغاز ثالث أكسيد الكبريت وثاني أكسيد النيتروجين:

a)
$$S_{(s)} + 3/2 \; O_{2(g)} \; \rightarrow \; SO_{3(g)} \quad \; , \quad \Delta H^o_{\; f} = \text{-}396 \; kj$$

b)
$$1/2~N_{2(g)} + O_{2(g)} \rightarrow ~NO_{2(g)} ~~,~~ \Delta H^o_{~f} = +33.2 KJ \label{eq:delta_fit}$$

مصدر حرارة التكوين : حين نحدد ارتفاع جبل ما ، فإنك تقوم بذلك بالنسبة لنقطة مرجعية ما – عادةً

ما تكون مستوى سطح البحر، وبطريقة مشابهة يتم تحديد حرارة التكوين القياسية اعتمادا على الافتراض التالى: ΔH^{*}₁SO₃

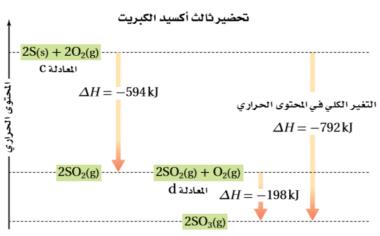

- $\Delta H^{o}_{f} = 0.0 \; \mathrm{KJ}$ حرارة تكوين العناصر في الحالة القياسية 1
 - 2 تعتبر الصفر نقطة بداية
- 3 وبالتالي يكون الناتج النهائي لحرارة التفاعل هو قيمة حرارة تكوين المركب فقط.
 - 4 وبالتالي يمكن عمل تدرج أوله الصفر ونهايته حرارة تكوين كل مركب.
- 5 تم استنتاج حرارات تكوين الكثير من المركبات ، وأصبحت كدليل لحرارات تكوين هذه المركبات في جداول خاصة .

معنى ذلك أن:

- a تم انطلاق 396 KJ عند تكون النواتج ، وينطلق هذا الكم من الطاقة من النواتج (SO₃) لذا ينخفض المحتوى الحراري عن الصفر بمقدار 396 KJ
- b تم امتصاص 33.2KJ من خلال المتفاعلات ، وتُخزن هذا الكم من الطاقة في الناتج (NO_2) لذا يرتفع محتواه الحراري عن الصفر بمقدار (NO_2)

	حرارة التكوين القياسية	الجدول 5-2
ΔH_f° (kJ/mol)	معادلة التكوين	المركب
-21	$H_{2(g)}+S_{(s)} \rightarrow H_2S_{(g)}$	$H_2S_{(g)}$
-273	$\frac{1}{2}H_{2(g)}+\frac{1}{2}F_{2(g)}{\longrightarrow}HF_{(g)}$	$\mathrm{HF}_{(\mathrm{g})}$
-396	$S_{(s)} + \frac{3}{2}O_{2(g)} \longrightarrow SO_{3(g)}$	SO _{3(g)}
-1220	$S_{(s)} + 3F_{2(g)} \longrightarrow SF_{6(g)}$	SF _{6(g)}

حرارة التكوين القياسية


S و O_2 و N_2 للعناصر ΔH_f^* و ΔH_f $O.0 \, \mathrm{kJ}$). عندما يتفاعـل N_2 مع مول واحد من NO₂ يتم امتصاص 33.2kJ من

 SO_3 أما عند تفاعل S مع O_2 لتكوين مول واحد من SO_3 لـ $\Delta\mathrm{H}_\mathrm{f}^{\circ}$ لـ أن غينطلـق الماقة من الطاقة. لذا فـإن تساوى J/mol.—369 kJ/mol.

توقع صف الموقع التقريبي للماء على الرسم أعلاه. $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)} \Delta H_f$ $=-286 \, kJ/mol$

س: هام: تحضير ثالث أكسيد الكبريت (مناقشة و استنتاج معادلات)

الشكل 2-12 يدل السهم الموجود عن اليسار على إطلاق S عند اتحاد S و O2 لتكوين المعادلية C_2 مع C_2 مع C_2 لتكوين SO (المعادلية C_2 المحتوى الحراري الكلي في المحتوى الحراري SO₃ (المعادلية d) عند إطلاق 198 kJ (السهم الأوسط). إن التغير الكلي في الحرارة (مجموع العمليتين) يمثله السهم الأيمن.

> أوجد التغير في المحتوى الحراري لتحلّل SO3 الى S و O₂.

استعمال حرارة التكوين القياسية:

أولاً - في حساب حرارة التفاعل ΔH_{rxn} لكثير من التفاعلات في الظروف القياسية باستعمال قيم حرارة التكوين

ثانياً - في حساب حرارة التفاعل AH_{rxn} لكثير من التفاعلات في الظروف القياسية باستعمال قانون هِس .

ثالثاً _ في التنبؤ باستقرار المركبات ونشاطها الكيميائي .

مثال : حساب ΔH_{rxn} لتفاعل ينتج سادس فلوريد الكبريت (\mathbf{SF}_6) وهو غاز مستقر غير نشط له تطبيقات مهمة مثل : الحفر على رقائق السيليكون في عملية إنتاج الأجهزة شبه الموصلة .

ملاحظة : تُعد أشباه الموصلات أجزاء مهمة في الأجهزة الإلكترونية الحديثة ومنها الحواسيب والهواتف الخلوية ومشغلات MP₃ وغيرها

الشكل 2-15 يستعمل سادس فلوريد الكبريت في حفر أشكال دقيقة، وأحيانًا بنمط محدد على رقائق السليكون في عملية إنتاج الأجهزة شبه الموصلات أجزاء مهمة في الأجهزة الإلكترونية الحديثة

مثال : احسب ΔH للتفاعل التالي بطريقتين مختلفتين ، يمكنك استخدام جدول حرارة التكوين

$$H_2S_{(g)} + 4F_{2(g)} \rightarrow 2HF_{(g)} + SF_{6(g)}$$
, $\Delta H_{rxn} = ??$

أولاً:

$$H_2S_{(g)} + 4F_{2(g)} \rightarrow 2HF_{(g)} + SF_{6(g)}$$

$$\Sigma \left(_{reactants} \right)$$
 $\Delta H_{rxn} = \Sigma \Delta H^o \left(_{oproducts} \right) - \Delta H^o$

ثانياً:

نستخدم معادلات حرارت التكوين لمركبات المعادلة ، لتوظيف قانون هس في حساب ΔH للمعادلة المطلوبة

ثالثاً: حرارة التكوين واستقرار المركبات:

-1 سالبية التكوين أكثر استقرارا من إيجابية التكوين -1 (-1 -1 أكثر استقرارا من -1 التكوين أكثر استقرارا من إيجابية التكوين يزداد استقرار المركب(-1 -1 -1 أكثر استقرارا من -1 أكثر استقرارا من -1 أكثر استقرارا من -1 أكثر استقرارا من -1 -1 -1 أكثر استقرارا من -1 -1 المركب -1 -1 -1 أكثر استقرارا من -1 أكثر استقرار المركب -1 -1 -1 أكثر استقرارا من -1 أكثر استقرارا من -1 المركب -1 المركب -1 -1 أكثر استقرارا من -1 المركب المركب -1 المركب المركب -1 المركب -1 المركب -1 المركب -1 المركب -1 المركب -1 المركب المركب المركب -1 المركب المرك

س : لديك الثلاث تفاعلات الافتراضية التالية :

 $A_1 + B_1 \rightarrow A_1B_1$, $\triangle H_{f_0}^0 = -50 \text{ Kj}$

 $A_3 + B_3 \rightarrow A_3B_3$, $\triangle H_{f}^0 = +30 \text{ Kj}$

 $A_2 + B_2 \rightarrow A_2B_2$, $\triangle H_f^0 = -40 \text{ Kj}$

رتب التفاعلات تنازلياً حسب استقرار النواتج ج: الأكثر استقراراً ← ← الأقل استقراراً

 $m KJ/mol)~\Delta H^o_f$ على قيم على المركبات التالية تبعاً لدرجة الثبات الحراري اعتماداً على قيم

. $(\Delta H_f^0 = +90.92) \text{ NO}$, $(\Delta H_f^0 = -110.5) \text{ CO}$, $(\Delta H_f^0 = -45.9) \text{ NH}_3$, $(\Delta H_f^0 = +33.2) \text{ NO}_2$

الأقل ثباتاً (الأقل استقرارا) (الأكثر نشاطا) ﴿ ﴿ ﴿ الأعلى ثباتاً (أكثر ها استقراراً) (الأقل نشاطا) كيمياء الثاني عشر — متقدم — 2023 حساب التغير [2] في المحتوى الحراري إعداد أ/إبراهيم النجار

مثال 6 -2: استعمل حرارة التكوين القياسية لحساب لتفاعل احتراق:

$$CH_{4(g)} \ + 2O_{2(g)} \ \to \ CO_{2(g)} \ + \ 2H_2O_{(l)}$$

 $\Delta H_{
m rxn}$ مستعيناً بجدول قيم حرارة التكوين القياسية ، احسب $\Delta H_{
m rxn}$ للتفاعل التالى : (-1398 Ki)

$$4NH_{3(g)} + 7O_{2(g)} \rightarrow 4NO_{2(g)} + 6H_2O_{(l)}$$

اوجد $\Delta ext{H}^{0}_{ ext{comb}}$ لحمض البيوتانويك ، $\Delta ext{H}_{2} ext{O}_{2(ext{g})}
ightarrow 4 ext{CO}_{2(ext{g})} + 4 ext{H}_{2} ext{O}_{(1)}$ ، مستعيناً بجدول قيم $4C_{(s)} + 4H_{2(g)} + O_{2(g)} \rightarrow C_3H_7COOH_{(l)}$, $\Delta H = -534~kj$: حرارة التكوين والمعادلة الكيميائية أدناه (-2186 Kj)

37 - بدمج معادلتي حرارة التكوين a و b تحصل على معادلة تفاعل أكسيد النيتروجين مع الأكسجين ، الذي ينتج عنه ثاني أكسيد ΔH^{o}_{f} النيتروجين . ما قيمة النيتروجين . النيتروجين . (-91.3 kj)

$$\begin{split} NO_{(g)} + 1/2 \ O_{2(g)} &\to NO_{2(g)} \quad , \Delta H^o{}_{rxn} = \text{-}58.1 \ kj \\ \\ 1/2 \ N_{2(g)} + 1/2 \ O_{2(g)} &\to NO_{(g)} \quad , \quad \Delta H^o{}_f = 91.3 \ kj \quad . \ a \\ \\ 1/2 \ N_{2(g)} + \ O_{2(g)} &\to NO_{2(g)} \quad , \quad \Delta H^o{}_f = ? \qquad . \ b \end{split}$$

في عملية صهر خام الحديد . وظّف قيم \triangle + 3C $_{(s)}$ \rightarrow 4Fe $_{(s)}$ + 3C $_{(s)}$ + 3C $_{(s)}$ - يدخل التفاعل: حرارة التكوين لحساب التغير في المحتوى الحراري خلال عملية إنتاج mol من الحديد .

لحساب التغير في المحتوى الحراري خلال عملية إنتاج mol 1 من الحديد نقسم المعادلة ÷ 4 ليصبح عدد مولات الحديد = mol

إعداد أ/إبراهيم النجار

حساب التغير 22 في المحتوى الحراري

كيمياء الثاني عشر – متقدم – 2023

، الموضحة بجدول حرارة التكوين	مستخدماً بيانات حرارة التفاعل التالي $2{ m Fe}_2{ m O}_{3({ m s})} ightarrow 2{ m Fe}_2$ مستخدماً بيانات حرارة التكوين $2{ m Fe}_3$ مستخدماً بيانات حرارة التكوين
قة بالـ SO_{2(g)} من 30.0 g من (139 kJ)	3 - تبلغ حرارة تكوين ثاني أكسيد الكبريت القياسية 296.8 kJ/mol – احسب كمية الطاقة المنطلا عناصره .
ول حرارة التكوين المرفق)	استعن بجد (استعن بجد $ m CO_{2(g)} + H_2O$ (استعن بجد $ m CH_4$ استعن الميثان $ m CH_4$
	- : إذا كانت حرارة احتراق غاز الأسيتيلين C_2H_2 تساوي 1301.1 Kj / mol أ - اكتب المعادلة الكيميائية الحرارية الموزونة للاحتراق التام C_2H_2
(<u>325 ki</u> : ट)	ب – إذا تفاعل $0.250\mathrm{mol}$ من $\mathrm{C}_2\mathrm{H}_2$ بحسب المعادلة في (أ) ، فما الطاقة المنطلقة من هذا التفاعل ؟
(<u>78.1g</u> :テ)	ج – كم جراما من C_2H_2 يلزم التفاعل ، بحسب المعادلة في (أ) لإطلاق طاقة 3900 Kj ؟
المداد أيان ادر الذرا	2022 × 2021 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

$CO_{2(g)}$, $H_2O_{(l)}$ متفاعلین ، ویکون C_6H_0	6 - احسب حرارة التفاعل القياسية لتفاعلي احتراق يكون فيهما الإيثان C2H6 و البنزين
مستخدماً قيم ΔH_f المبينة في ملحق الجدول.	الناتجين في كل منهما .، واحسب ذلك من خلال جمع المعادلات الكيميائية الحرارية المعروفة
	تحقق من النتائج باستخدام المعادلة العامة لإيجاد حرارة التفاعل من حرارات التكوين.

$$C_6H_{6(1)} + 7\% O_{2(g)} \rightarrow - \div C_2H_{6(g)} + 3\%O_{2(g)} \rightarrow -$$

(- 3267.5 kJ - ب ، - 1560.5 kJ - أ)

ر - الجلوكوز $C_6H_{12}O_{6(s)}$ له $C_6H_{12}O_{6(s)}$ ، احسب التغير في المحتوى الحراري عندما يحترق 1 mol من الجلوكوز لتكوين \triangle . \triangle

. النا علمت أن حرارة احتراق الهكسان هي 4163.2 kj - احسب حرارة تكوين الهكسان C_6H_{14} بالاستعانة بجدول حرارة التكوين (ج: - 198.4)

9 - استعن بالجداول واكتب المعادلة الكيميانية الحرارية المعبرة عن احتراق غاز البيوتان C4H10 ثم احسب قيمة حرارة التكوين الناتجة لغاز البيوتان .

(من جدول حرارة الاحتراق)
$$C_4H_{10(g)} + \frac{13}{2}O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(I)}$$
 , $\triangle H^0_C = -2877.6$

10 - التفاعل التالي يمثل عملية احتراق غاز البروبان

والمطلوب حساب ΔH_f والمطلوب حساب ΔH_g والمطلوب حساب ΔH_g والمطلوب حساب ΔH_g للبروبان ΔH_g $[\Delta H_{f}^{0} CO_{2(g)} = -393.5 \text{ kJ/mol}]$, $\Delta H_{f}^{0} H_{2}O_{(j)} = -285.8 \text{ kJ/mol}$

($\Delta H_f C_3 H_8 = -104.5 \text{ kJ/mol}$:₹)

11 - إذا علمت أن حرارة تكوين المركب x هي 612kj/mol - ، وحرارة تكوين المركب الوحيد الناتج من احتراقه هي 671kj/mol-، فما حرارة احتراق المركب x ؟ (ج: - 59)

 ΔH – بين كيف أن مجموع معادلات حرارة التكوين يعطى كلاً من التفاعلات التالية ، دون البحث عن قيم ΔH واستعمالها في الحل .

$$SO_{3(g)} + H_2O_{(1)} \rightarrow H_2SO_{4(aq)}$$
. b

$$2NO_{(g)}+O_{2(g)} \,\rightarrow\, 2NO_{2(g)} \quad . \ a$$

$$H_{2(g)} + S_{(s)} + 2O_{2(g)} \rightarrow H_2SO_4: H_2SO_4$$
 : H_2SO_4 is -1 $S_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow SO_{3(g)}: SO_3$ is -2 $O_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)} = 0$ is -3 $O_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow 0$ is -3 $O_{2(g)} + O_{2(g)} \rightarrow 0$ is -3 $O_{2(g)} + O_{2(g)} \rightarrow 0$ is -3 is -3 is -3 is -3 in -3 in

```
تابع تمارين :حرارة التكوين واستقرار المركبات :
     \Delta H^0_f = +50 من استقرارا من إيجابية التكوين ( \Delta H^0_f = -50 أكثر استقرارا من إيجابية التكوين أكثر استقرارا من إيجابية التكوين يزداد استقرار المركب ( \Delta H^0_f = -300 أكثر استقرارا من \Delta H^0_f = -200 أكثر استقرارا من \Delta H^0_f = -200
                                                                                                                                                                                                                                                                                                                                                  (\triangle H^0 = -100 \text{Ki}) من
                                 (\Delta H^0_f = +150 \text{Ki}) أقل استقرارا من \Delta H^0_f = +200 \text{Ki} أقل استقرارا من \Delta H^0_f = +300 \text{Ki}
                                                                                                                                                                                                                       س: رتب تصاعديا المركبات التالية حسب استقرارها بدلالة حرارات التكوين:
                                                                                                                                      Al_2O_{3(s)} = -1676.0 \text{ Kj/mol}
                                                                                                                                                                                                                                                                                                  / CaCO_{3(s)} = -1206.92 \text{ Kj/mol}
                                                                                                                                             NO_{(g)} = +90.92 \text{ Kj/mol} / O_{3(g)} = +142.7 \text{ Kj/mol}
                                                                                          الأقل استقراراً ← ← الأكثر استقراراً
                                                                                                                                                                                                                                                                                                                                                                   تخير 1 – أي المركبات التالية أكثر استقراراً:
                                                                                                                                                                   CaO \Delta H_{f}^{0} = -635 \text{ kJ/mol} - -900 \Delta H_{f}^{0} = -175 \text{ kJ/mol} - -900 \Delta H_{f}^{0} = -175 \text{ kJ/mol} - -900 \Delta H_{f}^{0} = -1000 \Delta H_{f}^{
                                                                                                                                                                   C_2H_2 \Delta H_f^0 = +228 \text{ kJ/mol} - 2
                                                                                                                                                                                                                                                                                                                                              NO_2 \Delta H_f^0 = +82 \text{ kJ/mol} - \pi
( ج:ب)
                                                                                                                                                                                                                               تخير 2 - أى مما يلى يصف حرارة تكوين المركب الأقل استقراراً ويتفكك بسهولة ؟
                                                                                                                                                                                             أ - صغيرة وسالبة ب- صغيرة وموجبة ج- كبيرة وسالبة د- كبيرة وموجبة
              ( ج: د )
                                                                                                                                                                                           N_{2(g)}+O_{2(g)}+106.5~{
m kJ} 
ightarrow 2NO_{(g)} تعبر عن N_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+O_{2(g)}+
                                                                                                                       أ - حرارة التكوين ب- ضعف حرارة التكوين ج- ضعف حرارة الاحتراق د- نصف حرارة التكوين
              ( ج: ب)
                                                                                                                                                                                                                                                                                                           كلمة غير منسجمة اختر البديل غير المنسجم ، مع التبرير:
                                                                                                                                 2NO_{(g)} \quad + \quad O_{2(g)} \quad \to \quad 2NO_{2(g)}
                                                                                                                                                                                                                                                                                                                                                       \Delta H = -114.2 \text{ kJ}
                                                                                                                     2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}
                                                                                                                                                                                                                                                                                                                                                   \Delta H = -196 \text{ kJ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                (2
                                                                                                               C_6 H_{12} O_{6(s)} \ + \quad 6 O_{2(g)} \quad \rightarrow \quad 6 C O_{2(g)} \ + \ 6 H_2 O_{(g)} \qquad \Delta H = - \ 2548 \ kJ
                                                                                                                                                                                                                                                                                                                                                                                                                                                 (3
                                                                                                                                                                                                              \rightarrow H<sub>2</sub>O<sub>(g)</sub>
                                                                                                                                                                                                                                                                                                                                                  \Delta H = -241.8 \text{ kJ}
                                                                                                            H_{2(g)} + \frac{1}{2}O_{2(g)}
H_{Z(g)} + _ M_{Z(g)} - 
                                                                                                                                                                                                                                    س: رتب تصاعديا المركبات التالية حسب استقرارها بدلالة حرارات التكوين:
                        Al_2O_{3(s)} = -1676.0 \text{ Kj/mol } // CaCO_{3(s)} = -1206.92 \text{ Kj/mol } // NO_{(g)} = +90.92 \text{ Kj/mol } // O_{3(g)} = +142.7 \text{ Kj/mol } 
                                                                                                الأقل استقرارا ← ← الأكثر استقرارا
                                                                                                                                                                                                    س: رتب تصاعديا الصيغ التالية حسب نشاطها علماً بأن حرارة التكوين القياسية بـ (kJ/mol ):
                                                                                                                                                                                                                                                                                  NO_{2(g)} , CH_{4(g)} , CO_{2(g)} , O_{3(g)}
                                                                                                                                                                                                                                                                             +33.2 , -74.3 , -393.5 , +192.7
                                                                                                                                                                                                                                                                                                                                                                            الترتيب: الأقل نشاطاً:
O_{3(g)} \leftarrow NO_{2(g)} \leftarrow CH_{4(g)} \leftarrow CO_{2(g)} : الأقل : الأقل
                                  إعداد أ/إبراهيم النجار
                                                                                                                                                                                                    حساب التغير 26 في المحتوى الحراري
                                                                                                                                                                                                                                                                                                                                                                                                                      كيمياء الثاني عشر – متقدم – 2023
```

The state of the s
س 6 رتب تصاعدياً المركبات الناتجة حسب استقرارها في مخططات الطاقة التالية:
· ب ج د
س : اختر كلمة غير منسجمة لحرارات التكوين التالية :
ر الحدر عند فير مسجده عزارات التوين التالية . (A :+ 85 Kj/mol // B :+ 100 Kj/mol // C :- 200 Kj/mol // D :+ 200 Kj/mol)
(A .+ 85 KJ/III01 // B .+ 100 KJ/III01 // C 200 KJ/III01 // D .+ 200 KJ/III01 / الكلمة غير المنسجمة :
س: إذا علمت أن المحتوى الحراري لنواتج تفاعل يساوي 458 Kj/mol والمحتوى الحراري للمتفاعلات يساوي 658 Kj/mol ، ما قيمة
هذا التفاعل ، ما الجزء الأكثر استقرارا من هذا النظام : المتفاعلات أم النواتج ؟ ΔH
س: فسر العلاقة بين استقرار المركب وحرارة تكوينه ؟
(كلما ازدادت القيمة العددية لحرارة التكوين ذات الإشارة السالبة (سالبية التكوين) يزداد استقرار المركب.)
عل : ثاني أكسيد الكربون أكثر استقرارا من العناصر المكونة له: لأن القيمة العدية لحرارة تكوين ثاني أكسيد الكربون ذات الإشارة السالبة الأكبر (أكثر استقرارا)، بينما حرارة تكوين العناصر المكونة له = صفر
<u> </u>
عل : فليمنات الزئبق $H_{\mathrm{f}}^{0}=+270$ ($\triangle H_{\mathrm{f}}^{0}=+270$) تُستخدم كصاعق للمتفجرات
لأن لها حرارة تكوين عالية ، وبالتالي تصبح غير مستقرة تماماً
علل : يتفاعل الأسيتيلين C_2H_2 بقوة مع الأكسجين
لأنه مركب يعاني من عدم الاستقرار الحراري نتيجة ارتفاع حرارة تكوينه $(H^0_{f}=+226.7 \mathrm{Ki})$

كيمياء الثاني عشر – متقدم – 2023 حساب التغير 27 في المحتوى الحراري إعداد أ/ إبر اهيم النجار

س: تخير الإجابة الصحيحة من بين الإجابات التالية

E	س
	1 - كمية الطاقة المنطلقة أو الممتصة على صورة حرارة خلال تفاعل كيميائي تسمى:
	أ ـ حرارة التكوين ب ـ حرارة التفاعل ج ـ الإنتروبي د ـ الطاقة الحرة
	2 - أي مما يلي غير قابل للقياس بشكل مباشر ؟ أ - حرارة التكوين ب - حرارة الاحتراق ج - المحتوى الحراري د - تغير المحتوى الحراري
	3 – أي من التالي هو الفرق بين المحتوى الحراري للمتفاعلات والنواتج:
	$H-$ ک کے ΔH ہے کے $\Delta S-$ ا
	4 – ما اسم الطاقة المنطلقة على صورة حرارة عندما يُنتج مول واحد من مركب باتحاد عناصره ؟ أ – حرارة التكوين ب – حرارة الاحتراق ج – الطاقة الحرارية د – الإنتروبي
	5 - التفاعل الماص للحرارة: أ - له تغير محتوى حراري موجب ج - ليس له تغير محتوى حراري ب - له تغير محتوى حراري سالب د - له تغير محتوى حراري موجب أو سالب
	$Mg_{(s)} + 2H_3O^+_{(aq)} + 2Cl^{(aq)} \rightarrow Mg^{2+}_{(aq)} + 2Cl^{(aq)} + H_{2(g)} + 2H_2O_{(1)} - 0$ $Mg + 2H_3O^+_{(aq)} + 2Cl^{(aq)} \rightarrow Mg^{2+}_{(aq)} + 2Cl^{(aq)} + H_{2(g)} + 2H_2O_{(1)} - 0$ $Mg + 2H_3O^+_{(2g)} + 2Cl^{(2g)} \rightarrow 2H_2O_{(2g)} \rightarrow 2H_2O_{(2g)} \rightarrow 2H_2O_{(2g)} \rightarrow 2H_2O_{(2g)} \rightarrow 2H_2O_{(2g)} + 483.6 \text{ kj}$ $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 483.6 \text{ kj}$ $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} + 483.6 \text{ kj}$
	7 - المركبات التي لها حرارة تكوين ذات قيمة سالبة عالية: أ - لا توجد ب - جداً غير مستقرة ج - تنحل بسهولة د - عالية الاستقرار
	8 – المركب الذي يكون غير مستقر ويتفكك بشدة يكون له حرارة تكوين : أ – صغيرة وسالبة ب – صغيرة وموجبة ج – كبيرة وسالبة د – كبيرة وموجبة
	+458 و $+458$ للتفاعلين $+458$ و $+$
	+ 1116 - ب - 200 - ج - 200 - ب - 1116 - أ
	C افترض أن C المتفاعل C وأنه يمكن كتابة التفاعل C على شكل مجموع التفاعل الأمامي C المتفاعل الأمامي C في من المجموع C الناتج من المجموع C الناتج من المجموع C الناتج من C الناتج من المجموع C المجدون المجموع C المجدود C المجد
3	س
	$H_2O_{(s)} ightarrow H_2O_{(l)}:$ اشارة ΔH للتفاعل التالى: ا $H_2O_{(s)} ightarrow H_2O_{(l)}$
	$H_2(G_1) \rightarrow H_2(G_2) \rightarrow H_2(G_3)$ المسابة والتغير طارد للحرارة $H_2(G_3) \rightarrow H_2(G_3)$ المحرارة $H_2(G_3) \rightarrow H_2(G_3)$
-	كرمراء الثاني عثير _ منقد _ 2023 _ حساب التغير [28] في المحتوى الحراري

12 — إ ذا كان المحتوى الحراري للنواتج أقل من المحتوي الحراري للمتفاعلات فإن التفاعل يكون : أ — ماص للحرارة ب — طارد للحرارة ج — يتم عند حجم ثابت د — يكون روابط أقوى
النفاعل التالي: $H_{3(g)} + rac{7}{4} O_{2(g)} ightarrow NO_{2(g)} + rac{3}{2} H_2 O_{(g)} + 282.6 ext{ kj}$ فإن التغير في المحتوى الحراري المصاحب لانتاج $NH_{3(g)} + rac{7}{4} O_{2(g)} ightarrow NO_{2(g)} + rac{3}{2} H_2 O_{(g)} + 282.6 ext{ kj}$
مول واحد من (\mathbf{O}_2) في التفاعل المعاكس بوحدة \mathbf{KJ} :
ر - 161.5 ج - 282.6 ح - 161.5 − 1
I Individually to 1 and
$2S_{(s)}+3O_{2(g)} ightarrow 2SO_{3(g)},\DeltaH=-792~{ m kJ}$ أي العبارات التالية صحيحة: $S_{(S)}$ أي العبارات التالية صحيحة: $S_{(S)}$ أ- التفاعل ماص للحرارة $S_{(S)}$
$SO_{3(g)}$ ب - حرارة تكوين $SO_{3(g)}$ = حرارة التفاعل $SO_{3(g)}$ = حرارة التفاعل $SO_{3(g)}$ = حرارة التفاعل
$2 S_{(s)} + 3 O_{2 (g)} ightarrow 2SO_{3 (g)} \; , \; \Delta H = -792 \; kJ$ أي العبارات التالية صحيحة :
أ ــ الحرارة الناتجة هي حرارة التكوين ج ــ الحرارة الناتجة هي حرارة الاحتراق ب ــ حرارة التفاعل تمثل ضعف حرارة الاحتراق د ــ حرارة التفاعل تمثل ضعف حرارة الاحتراق وضعف حرارة التكوين
يمة ΔH للتفاعل $2NO_{(g)} + N_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)}$ تعبر عن:
أ۔ حرارة التكوين بـ - ضعف حرارة التكوين ج - ضعف حرارة الاحتراق د - نصف حرارة التكوين
ا المعادلات التالية تمثل تكوَّن مول واحد من $\mathrm{B_{5}H_{9(g)}}$ من عناصره في حالاتها القياسية عند درجة حرارة X 298 وضغط $\mathrm{B_{5}H_{9(g)}}$
°1 atm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2D(s) + DSHg(g) - DSHg(g
$ ext{CO}_{(\mathrm{g})} + rac{1}{2} ext{O}_{2(\mathrm{g})} o ext{CO}_{2(\mathrm{g})} + 283 ext{ Kj} :$ تمثل $\Delta ext{H}$ للتفاعل التالي ~ 18
CO_2 أ $-$ حرارة تكوين CO_2 ب $-$ حرارة احتراق CO_2 ج $-$ حرارة احتراق الكربون د $-$ حرارة احتراق CO_2
C . C . CO AH 2025 V2 . Intellet 1 . Per 40
$C_{(s)} + O_{2(g)} o CO_{2(g)}$, ΔH = -393.5 Kj : عمثل حرارة النفاعل $C_{(s)} + C_{(s)} + C_{(g)} + C_{(g)} + C_{(g)}$ ج $C_{(s)} + C_{(g)} + C_{(g)}$ ا $C_{(s)} + C_{(g)} + C_{($
التفاعلين التاليين تتوقع أن يكون $igtheta igtheta$ له أكثر سالبية : $egin{aligned} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{aligned}$
1) $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)}$
$(2) H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(l)}$
أ ــ المعادلة الأولى
مياء الثاني عشر – متقدم – 2023 مساب التغير [29] في المحتوى الحراري إعداد أ/ إبر اهيم النجار

إعداد أ/إبراهيم النجار

21 – أي من التغيرات التالية طارد للحرارة :
0 ر الماء إلى بخار عند 0 C ج – تحول 0 الماء إلى ثلج عند 0 C أ – تحول 0 C الماء إلى ثلج عند
ب – انصهار (1 g) من التلج عند 10 C من ا
: يمكن القول أن $H_{2(\mathrm{g})} + rac{1}{2} \mathbf{O}_{2(\mathrm{g})} ightarrow H_2 \mathbf{O}_{(\mathrm{l})} \;\; , \; \triangle \mathbf{H} = -285 \; \mathrm{kj} \;$ يمكن القول أن
أ ــ المحتوى الحراري للماء السائل أقل منه لكل من المادتين المتفاعلتين
ب - المحتوى الحراري للماء السائل أكبر منه لكل من المانتين المتفاعلتين
ج _ التفاعل هو تفاعل تعادل طار د للحرارة
د - التفاعل هو تفاعل احتراق ماص للحرارة
23 – إذا علمت أن التفاعلين التاليين طاردان للحرارة:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
فإن : ا X_1 أكبر من X_2 \ddot{X}_1 تساوي X_2 X_2 \ddot{X}_1 أصغر من X_2 د $=$ المعلومات غير كافية للإجابة X_1 اصغر من X_2 المعلومات غير كافية الإجابة
24 – اذا علمت أن الحرارة الناتجة عن احتراق 1g من الميثانول تساوي 27.8 kj ،فإن حرارة احتراق الميثانولCH3OH تساوي:
0.87KJ − ب - 889.6KJ - ب - 889.6KJ ب - 889.6KJ
$_{25}$ – احسب الحرارة الناتجة عن احتراق 25g من الايثانول إذا علمت أن طاقة احتراق الايثانول $_{1367 ext{KJ}}^{24}$ تساوي $_{1367 ext{KJ}}^{25}$ -:
أ – 889.6KJ – ب - 889.6KJ – ع – 1.15KJ – د – 889.6KJ
ΔH عندما یکون حرارة التفاعل ΔH سالباً فإن :
20 – كله يون كرارة ، كله كله كله كان . أ ـ التفاعل ماص للحرارة جان المعتوى الحراري للنواتج يساوي المحتوى الحراري للمتفاعلات
ب ـــ المحتوى الحراري للنواتج أعلى من المحتوى الحراري للمتفاعلات ـــ دــ التفاعل طارد للحرارة
27 – أي المركبات التالية أكثر استقراراً : أ ما 1751 لـ 175 ما 175 م
CaO $\Delta H_0^0 = -635 \text{ kJ/mol}$ - τ CuO $\Delta H_0^0 = -175 \text{ kJ/mol}$ - $\frac{1}{2}$
$C_2H_2 \Delta H^0_f = + 228 \text{ kJ/mol}$ NO ₂ $\Delta H^0_f = + 82 \text{ kJ/mol}$ \sim
28 – أي المركبات التالية أقل استقراراً:
CaO $\Delta H_{\rm f}^0 = -635 \text{kJ/mol}$ $\sigma = -175 \text{kJ/mol}$
C_2H_2 $\Delta H_1^0 = + 228 \text{ kJ/mol}$ C_2H_2 $\Delta H_1^0 = + 82 \text{ kJ/mol}$ C_2H_3 $\Delta H_4^0 = + 82 \text{ kJ/mol}$ C_2H_3 C_2
OTT. dezn ji ze i tživi z ti zem i t t i i oo
29 ــ أي مما يلي يصف حرارة تكوين المركب الأقل استقراراً ويتفكك بسهولة ؟ أــ صغيرة وسالبة بــ صغيرة وموجبة جــ كبيرة وسالبة دـ كبيرة وموجبة
ا- صغیرہ وسائبہ ہے ۔ حبیرہ وسائبہ دے حبیرہ وسائبہ اللہ موجبہ اللہ اللہ اللہ اللہ اللہ اللہ اللہ ال
30 _ أي مما يلي يصف حرارة تكوين المركب الأكثر استقراراً ويتفكك بصعوبة ؟
اً- صغيرة وسالبة ب- صغيرة وموجبة ج- كبيرة وسالبة د- كبيرة وموجبة
$ ext{H}_2 ext{O}_{(\mathrm{g})}$ د- $ ext{G}_{(\mathrm{g})} ext{-1}$ لجميع المواد التالية عدا : أ $ ext{N}_{2(\mathrm{g})} ext{-1}$ بكون $ ext{G}_{(\mathrm{g})} ext{-2}$ لجميع المواد التالية عدا : أ
C . C . TT C . Lot Hell I live t Azzl (C . de Co
$ ext{C}_{(\mathrm{g})}$ - تكون $ extstyle H^0_{\mathrm{f}} eq 0$ بـ $ extstyle O_{2(\mathrm{g})}$ ج $ extstyle O_{2(\mathrm{g})}$ د- $ extstyle H^0_{\mathrm{f}}$ لجميع المواد التالية عدا : أ
بمياء الثاني عشر – متقدم – 2023 حساب التغير 30 في المحتوى الحراري إعداد أ/ إبر اهيم النجار

: ${ m CO}_{2(g)}$ التكوين القياسي للمركب ${ m CO}_{2(g)}$:					
$C_{(g)} + O_{2(g)} \rightarrow CO_{2(g)}$, $\triangle H = -393.5 \text{ Kj}$					
$C_{(s)}$ + $O_{2(g)}$ \rightarrow $CO_{2(s)}$, $\triangle H$ = -393.5 Kj - \cdot					
$C_{(s)}$ + $O_{2(g)}$ \rightarrow $CO_{2(g)}$, $\triangle H = -393.5 \text{ Kj}$ - ε					
نات حرارة التكوين القياسية Φ_{f}^{0} للماء السائل تساوي Φ_{f}^{0} - وللماء في الحالة الغازية تساوي Φ_{f}^{0} الماء السائل تساوي Φ_{f}^{0} عبان					
اللازمة لتبخير مول واحد من الماء تساوي بوحدة ${ m kj}$:					
اً - 43.9 - ب - 126.1 - ج - 126.1 د - 43.9 - ا					
$ ext{CHCl}_{3(\mathrm{g})}$ عما يلي يمثل تفاعل تكوين الكلوروفورم: $ ext{CHCl}_{3(\mathrm{g})}$:					
$C_{(diamond)} + H_{(g)} + 3Cl_{(g)} \rightarrow CHCl_{3(g)} - 1$					
$C_{(graphite)} + \frac{1}{2} H_{2(g)} + \frac{3}{2} Cl_{2(g)} \rightarrow CHCl_{3(g)} - 2$					
$C_{(diamond)} + \frac{1}{2} H_{2(l)} + 3Cl_{(g)} \rightarrow CHCl_{3(g)} - \varepsilon$					
$C_{(graphite)} + H_{(g)} + 3/2 Cl_{2(g)} \rightarrow CHCl_{3(g)} - 2$					
$-36.2 \text{ kj.mol}^{-1}$ فإن حرارة التكوين لبروميد الهيدروجين تساوي : أ - 2HBr $_{(g)} \rightarrow H_{2(g)} + Br_{2(g)}$, $\triangle H = +72.4 \text{ Kj}$ نساوي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$ حسب التفاعل التالي : أ - $-36.2 \text{ kj.mol}^{-1}$					
2Al + 2NaOH + 4H ₂ O → 2NaAlO ₃ + 5H ₂ + 300 KJ : في المعادلة التالية – 37					
فَإِن عدد مولات الألمونيوم Al المتفاعلة عندما تنطلق طاقة مقدار ها 50KJ هو : أ - 0.666 mol ب — 0.333 mol ب — 0.333 mol د - 0.222 mol					
38 - إذا علمت أن حرارة تكوين المركب x هي 612kj/mol - ، وحرارة تكوين المركب الوحيد الناتج من احتراقه هي 671kj/mol-					
، فتكون حرارة احتراق المركب x : أ - 259 kj - ب +59kj - ب -59 kj					
تمارين الوحدة					
38 : وضح المقصود بقانون هس ، وكيف يُستعمل لإيجاد ΔΗ _{ιxn} ؟					
اذا كان مجموع معادلتين أو أكثر يساوي معادلة كلية ، فإن ΔΗ° _{ρη} للمعادلة الكلية مساوية لمجموع ΔΗ° _{ρη} قيم للمعادلة التي دُمجت					

39 : اشرح بالكلمات الصيغة التي يمكن استعمالها لإيجاد ΔH°_{rxn} عند استعمال قانون هس ؟

 $\Delta H_{rxn} = \Sigma \Delta H^{\circ}$ (products نفاعلات) $- \Sigma \Delta H^{\circ}$ (reactants منفاعلات)

المحتوى الحراري للتفاعل في الظروف القياسية (1atm, 298K) يساوي مجموع حرارة التكوين القياسية للنواتج مطروحاً منه مجموع حرارة التكوين القياسية للمواد المتفاعلة .

إعداد أ/إبراهيم النجار

حساب التغير 31 في المحتوى الحراري

كيمياء الثاني عشر – متقدم – 2023

40 : صف كيف تعرف العناصر في حالاتها القياسية على تدريج حرارة التكوين القياسية ؟ تُعطى لهم حرارة تكوين = صفر

41 - تفحص البيانات في الجدول 5-2 ، ماذا يمكن أن تستنتج عن ثبات أو استقرار المركبات المذكورة مقارنة بالعناصر في حالاتها القياسية ؟ تذكر أن الثبات أو الاستقر ار ير تبط مع الطاقة المنخفضة .

المركبات الموجودة في الجدول 5-2 جميعها أكثر ثباتاً من العناصر التي تكونت منها ، وكلما كانت حرارة التكوين أقل قيمة رياضية ، كلما كان المركب أكثر استقراراً

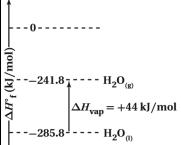
ناه : ΔH استعمل قانون هس لابجاد ΔH للتفاعل أدناه : (-233 KJ)

$${
m NO_{(g)}} + {
m O_{(g)}}
ightarrow {
m NO_{2(g)}}
ightarrow \Delta H = ?$$
 : مستعيناً بالتفاعلات الآتية $m C_{const}$

$$O_{2(g)} \rightarrow 2O_{(g)}$$
, $\Delta H = +495$ KJ
$$2O_{3(g)} \rightarrow 3O_{2(g)}$$
, $\Delta H = -427$ kj
$$NO_{(g)} + O_{3(g)} \rightarrow NO_{2(g)} + O_{2(g)}$$
, $\Delta H = -199$ kj

43 - تفسير الرسوم العلمية: استعمل البيانات أدناه لعمل رسم لحرارة التكوين القياسية مشابه للشكل 14-2 واستعمله في إيجاد حرارة تبخر الماء عند درجة حرارة 298k.

 $\Delta H^{o}_{f} = -285.8 \text{ kj/mol}$: الماء السائل


 $\Delta H^{o}_{f} = -241.8 \text{ kj/mol}$: الماء في الحالة الغازية

الماء في الحالة السائلة سيكون تحت الصفر بمقدار 285.8KJ/mol .

الماء في الحالة الغازية سيكون تحت الصفر بمقدار 241.8KJ/mol .

ومن الرسم يمكن استنتاج حرارة التبخير: = الفرق بين الطاقتين

244kj = (-241.8kj) = 44kj الفرق بين الطاقتين = حرارة التبخير

تقويم الفصل:

89: ما الذي تصفه حرارة التكوين القياسية لمركب معين ؟

تصف حرارة التكوين القياسية التغير في المحتوى الحراري (محتوى الطاقة) عندما يتكون مول واحد من المركب من عناصره في حالاتها الطبيعية

 90 : كيف تتغير $_{\Delta H}$ في معادلة كيميائية حرارية إذا تضاعفت كميات المواد جميعها ثلاث مرات و عُكست المعادلة ؟ تتضاعف قيمة ΔH وتتغير الإشارة

■ الشكل 25

Al(s) +
$$3/2\text{Cl}_2$$
 (g) \rightarrow AlCl₃(s) .91 $\Delta H^{\circ}_f = -704 \text{ kJ}$

91. استعن بالشكل 25 لكتابة المعادلة الكيميائية الحرارية لتكوين واحد مول من كلوريد الألمنيوم من عناصره في حالتها القياسية.

 $P_4O_{6(s)} + 2O_{2(g)} \rightarrow P_4O_{10(s)}$: استعمل حرارة التكوين القياسية لحساب للتفاعل الأتي : 92 (-1343.9 kj)

93 : استعمل قانون هس والمعادلتين الكيميائيتين الحراريتين الآتيتين لإيجاد المعادلة الكيميائية الحرارية للتفاعل :

$$(-2kj)$$
 عا مقدار ΔH ما مقدار $C_{(s}$ ما مقدار $C_{(s)}$ ما مقدار (-2kj)

a)
$$C_{(s, (4))} + O_{2(g)} \rightarrow CO_{2(g)}$$
 , $\Delta H = -394 \ kj$

$$b$$
) $~C_{\,(\,s\,,\,\,\text{obs})}\,+\,\,O_{2(g)}~\rightarrow~CO_{2(g)}~,\,\Delta H=\text{-396 kj}$

 ΔH : استعمل قانون هس والتغيرات في المحتوى الحراري للتفاعلين الأتيين لحساب ΔH للتفاعل: (ΔH ΔH)

$$2A + B_2C_3 \ \to \ 2B + A_2C_3$$

$$2A + 3/2 \ C_2 \ \to \ A_2C_3 \ , \ \Delta H = -1874 \ KJ$$

$$2B + 3/2C_2 \ \to \ B_2C_3 \ \Delta H = -285 \ KJ$$

المعادلتين يعد ثالث كلوريد الفوسفور مادة أولية في تحضير مركبات الفوسفور العضوية . بين كيف يمكن استعمال المعادلتين $c_{3(1)} + Cl_{2(g)} \rightarrow PCl_{5(s)}$ الكيميائيتين الحراريتين $c_{3(1)} + Cl_{2(g)} \rightarrow PCl_{5(s)}$

$$\begin{array}{ccc} (-\underline{124kj}\,) & P_{4(s)} + 6Cl_{2(g)} \, \to \, 4PCl_{3(l)}\,,\, \Delta H = -1280\,\,kj & (a \\ \\ P_{4(s)} + 10Cl_{2(g)} \, \to \, 4PCl_{5(s)}\,,\, \Delta H = -1774\,\,kj & (b \end{array}$$

من الجلوكوز هو السكر البسيط الموجود في الفاكهة ، احتراق 10.0g من الجلوكوز يُطلق 15.6kj من الطاقة . كم عدد السعرات الغذائية (Cal) التي تنطلق من هذا التفاعل ؟ (3.73 Cal)

4 – تجربة :

کأس (ب)	كأس (أ)	التفاعل
100mL	100mL	كمية الماء في الكأس
25°C	25°C	درجة الحرارة الابتدائية
13g كبريتات المغنسيوم	9g من البوراكس (بورات الصوديوم)اللامائي	المادة المضافة
16°C	50°C	درجة حرارة الذوبان
		نوع الذوبان حرارياً

www.chem4u.net

:	المعلم	بدليل	خار جي	_ مفهوم	5
---	--------	-------	--------	---------	---

وحدة الحرارة البريطانية / هي الطاقة اللازمة لرفع درجة حرارة رطل واحد من الماء درجة فهرنهايت من (
$$\underline{BTU}$$
) : وحدة الحرارة البريطانية / هي الطاقة اللازمة لرفع درجة حرارة رطل واحد من الماء درجة فهرنهايت من (\underline{BTU}) / 64° C إلى 63° f

6 - علل: تبرد الخرسانة في الليل أكثر من الماء؟

7 من النفاعلات الهامة صناعياً " تفاعل الثيرمت " الذي يمكننا من لحام المعادن تحت الماء ، ويتم تنشيط هذا التفاعل بحرارة $Fe_2O_{3(s)}+Al_{(s)} \rightarrow Al_2O_{3(s)}+2Fe_{(s)}+Energy$ شريط المغنسيوم المحترق :

أ - نوع التفاعل: ب - احسب حرارة التفاعل بطريقتين:

تمارين خارجية:

(226.4 KJ) : أوجد حرارة تكوين الأسيتيلين C₂H₂ : وجد حرارة تكوين الأسيتيلين

باستخدام المعلومات التالية:

$$C_{(s)}$$
 + $O_{2(g)}$ \rightarrow $CO_{2(g)}$ $\Delta H = -393.5 \text{ KJ}$

$$H_{2(g)} \; + \, 1/2 \; O_{2(g)} \; \rightarrow \; \; H_2O_{\,(l)} \qquad \qquad \Delta H = -286 \; KJ \label{eq:deltaH2}$$

$$2C_2H_{2(g)} + 5O_{2(g)} \ \to \ 4CO_{2(g)} \ + 2H_2O_{(l)} \quad \ \Delta H = -2598.8 \ KJ$$

س2 : أوجد حرارة تكوين الميثانول CH₃OH :

باستخدام المعلومات التالية:

$$CH_3OH_{(g)} + 3/2 O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$$
 $\Delta H = -715 \text{ KJ}$

$$C_{(s)} \quad + \quad O_{2(g)} \, \rightarrow \, CO_{2(g)} \qquad \qquad \Delta H = \text{-393.5 KJ} \label{eq:deltaham}$$

$$H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2 O_{(I)}$$
 $\Delta H = -286 \text{ KJ}$

حساب التغير 35 في المحتوى الحراري إعداد أ/ إبراهيم النجار

(-250.5 KJ)

س 3: تخير الإجابة الصحيحة من بين الإجابات التالية:

التفاعل	ΔН			
$P_4O_{10(S)} + 6H_2O_{(I)} \rightarrow 4H_3PO_{4(S)}$	-397			
$6PCl_{5(s)} + 24H_2O_{(l)} \rightarrow 6H_3PO_{4(s)} + 30HCl_{(g)}$	-816			
$10H_3PO_{4(s)} + 30HCl_{(g)} \rightarrow 10POCl_{3(l)} + 30H_2O_{(l)}$	+680			
$ hinspace : P_4O_{10(S)} + 6PCl_{5(s)} o 10POCl_{3(l)} : P_4O_{10(S)} + \Delta H$ يكون ΔH يكون				
-450 kj - ب − 1893 kj - ت − 1893 kj - ب − 533 kj	<u> </u>			

(أ)

س SiO_2 فاحسب كمية الحرارة المنطقة من ΔH^0_f فاحسب كمية الحرارة المنطقة من ΔH^0_f فاحسب كمية الحرارة المنطقة من (Si=28 , O=16) . SO_2 من SO_2 من S

س5 : احسب حرارة التكوين $\Delta H^0_{\,\mathrm{f}}$ لأكسيد الألمونيوم $\mathrm{Al}_2\mathrm{O}_3$ في الحالة الصلبة إذا علمت أن حرارة تكون $\Delta H^0_{\,\mathrm{f}}$ من أكسيد الألمونيوم هي $\Delta H^0_{\,\mathrm{f}}$ الألمونيوم هي $\Delta H^0_{\,\mathrm{f}}$ - $\Delta H^0_{\,\mathrm{f}}$ الألمونيوم هي $\Delta H^0_{\,\mathrm{f}}$ المرابع من المرابع ال

 $1/2~{
m O}_2({
m g}) + {
m H}_2({
m g})~
ightarrow~ {
m H}_2{
m O}~~,~~ \Delta {
m H}^{
m O} = -286~{
m KJ}$: حسب التفاعل التالي : 6 ...

إذا كانت كثافة الأكسجين تساوي g/L ، فاحسب كمية الحرارة المنطلقة بوحدة (KJ) لدى تفاعل 2L من الأكسجين مع زيادة من الهيدروجين عند نفس الظروف .

(- 92 kj)

 $N_{2(g)}+3H_{2(g)} \ \leftrightarrows \ 2NH_{3(g)}$: احسب ΔH^{O} للتفاعل : 7 : احسب

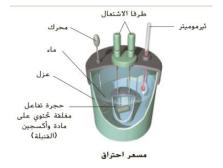
إذا علمت أن الحرارة الناتجة من تكون (0.017 Kg) من النشادر عند الظروف القياسية تساوي 45KJ

احْتبار مقنن : 3 / تخير : يسمى التغير في المحتوى الحراري الذي يرافق تكون مول واحد من المركب في الظروف القياسية من عناصره في حالاتها القياسية :

د - حرارة التكوين القياسية

أ – حرارة الاحتراق

ج - حرارة الانصهار المولارية


حدد نوع العمليات التالية (طاردة أو ماصة) للحرارة :

ب - احتراق الغاز الطبيعي في فرن داخل المنزل

أ - تسخين الشاي في الميكروويف

ج - انصهار الجليد في البركة بسبب ضوء الشمس

(أ – ماص للحرارة ب – طارد للحرارة ج – ماص للحرارة)

علل: أهمية عدم احتكاك المحرك عند التقليب في مسعر الاحتراق. لأن المحرك عند التقليب في مسعر الاحتراق. لأن المحرك عندما يُحدث احتكاك سوف يولد حرارة ، والتي بدور ها ستضاف إلى الماء ، وتحدث خطأ في التغير الحراري الذي يتم قياسه.