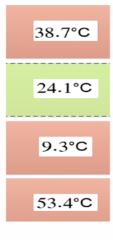

Which of the following processes are endothermic?

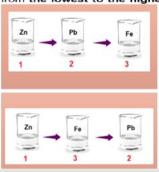

أي العمليات التالية ماصة للحرارة؟

A 15.0 g piece of cadmium metal absorbed 32.0 cal of heat. The final temperature was 62.7° C and the specific heat of cadmium equals 0.231 J/(g.°C). What was the initial temperature?

امتصت قطعة كتلتها g 15.0 من فلز الكادميوم 22.0 من الحرارة. كانت درجة الحرارة النهائية °62.7 والحرارة النوعية للكادميوم تساوي (0.°C)/(g.°C) ماذا كانت درجة الحرارة الابتدائية؟

The following table shows specific heat of three metals:

الجدول التالي يوضع الحرارة النوعية لثلاثة فلزات:


Metal	الفاز	Fe	Pb	Zn
specific heat	الحرارة النوعية	0.449 J/(g.°C)	0.129 J/(g.°C)	0.388 J/(g.°C)

If $1.00~\rm g$ of each metal is heated to $100\rm ^{\circ}C$ and added to $10.0~\rm g$ of H₂O at $25\rm ^{\circ}C$ in the three separate glass beakers as in the figure below,


إذا شخن g 1.00 من كل فلز إلى °100° وأضيف إلى g 10.0 من H2O عند °25° في ثلاثة كؤوس زجاجية كما في الشكل أدناه،

what is the order of the final temperatures of beakers from the lowest to the highest?

ما ترتيب درجات الحرارة النهائية للكؤوس من الأقل إلى الأعلى؟

Which of the following is correct regarding the figure below?

أي التالية صحيح فيما يتعلق بالشكل أدناه؟

The reaction is an exothermic

التفاعل طارد للحرارة

Heat to surroundings

الحرارة إلى الوسط

Represents the reaction that occur in the Cold-Pack

يُمثل التفاعل الذي يحدث في الكمادة الباردة

The enthalpy of the products is less than the enthalpy of the reactants

المحتوى الحراري للنواتج أقل من المحتوى الحراري للمواد المتفاعلة

Which of the $\Delta \mathbf{H}$ values given in the following reactions represents the standard enthalpy of formation $\Delta \mathbf{H}_f^{\circ} \text{ of NO}_2 \text{ compound?}$

أي من قيم ΔH المُعطاة في التفاعلات التالية تُمثل حرارة التكوين القياسية ΔH_f° للمركب ΔH_f°

1	$\text{NO}_{(g)} + \text{O}_{3(g)} \rightarrow \text{NO}_{2(g)} + \text{O}_{2(g)}$	$\Delta \mathbf{H} = -199 \mathbf{kJ}$
2	$\frac{1}{2}N_{2(g)}+O_{2(g)}\rightarrow NO_{2(g)}$	$\Delta \mathbf{H} = +33.2 \text{ kJ}$
3	$N_{2(g)}+2O_{2(g)}\rightarrow 2NO_{2(g)}$	$\Delta \mathbf{H} = +66.4 \mathbf{kJ}$
4	$NO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{2(g)}$	$\Delta \mathbf{H} = -58.1\mathbf{kJ}$

What mass of sucrose $C_{12}H_{22}O_{11}$ must be burned in order to liberate $8466\,$ kJ of heat?

 $8466 \; k$ ا لاتتاج لا $C_{12}H_{22}O_{11}$ التي يجب حرقها لاتتاج لا من الحرارة؟

Molar mass	الكتلة المولية	ΔH_{comb}°	Formula	الصيغة	Substance	المادة
342.3 g/mol		-5644 kJ/mol	C ₁₂ H ₂₂ O)11	Sucrose	السكروز

513.5 g 228.2 g 684.6 g